JXplorer

Administrator Guide

Contents

Chapter 1: About JXplorer 1
RTAT A T L ST o] [0 =T 1
What Can YOU DO With JXPIOrer? ...ttt ettt et ettt ettt e e e e neeaes 2
Requirements and Supported Platformso i e 2
5181 o] eToT g (=To BRSY oT=Tox | 1 Tot= £ Lo] o E- N S 3
Chapter 2: The JXplorer Browser 5
LI I =TS0 2= 1 T 5
The QUICK SEAICR Bar ..ottt ettt ettt ettt e et e et et e e e et e e e e e e e e e e e e e aa i aaaeeeeeaaaannnneen 9
LILALCIE = 01 ¥ Y2 B TE] o] F= Y PP 10
Chapter 3: Connecting to a Directory 13
LA LS00 1Tt s I T =1 o T 14
Security Levels fOr LDAP CONNECTIONSttt ettt ettt ettt et e et e ane e aneeaneeans 15
Save Connection Details in @ TemMPIate ... ettt anean 16
Chapter 4: Searching a Directory 17
(O LU T3 1S == o 1= 17
(07015 a1 0] LR Y= = T e] o 1= 18
Y=t T o O] 01T = 1 (o] = N 22
Y= 1o o 0 g 0T 24
BOOKIMAIKS e e 24
Chapter 5: Editing the Directory 25
(D] =Tt Co] oY I g =T= I @ 01T = U (0] 1 25
MOdify ATIHDULES IN AN ENEIY oo ettt ettt et ettt e e e e et eaaaeeeannens 28
F N AR o TU L= o [(0] = S 31
BINAIY ValUES .o e et e 35
2o (o = T ANV o Y/ 37
Submit an ENtry t0 the DireCTOrYt e anees 38
Chapter 6: Importing and Exporting Data 39
BiNary Values iN LDIF FilES ..ottt ettt ettt ettt et e et et e e e e e eaaeeeanneenn 39
Use an LDIF File WItROUT @ DIr@CLOIYt ettt ettt e et et e e e e 40

Contents iii

Chapter 7: Resolving Aliases 41
How JXplorer DiSplays AlIBSESttt 41
Create @ NeW AlAS ENTrY ..ttt ettt et et et et et e e 42
Res0oIVe AlASES WHIlE BIrOWSINGttt ettt et ettt ettt ettt et et e e e e e anees 42
Resolve Aliases While SearChing oo e 45
Chapter 8: Logging and Troubleshooting a7
[0 Yo T T T P 47
QLI 181 o =21 o T Yo 11 T 47
Chapter 9: Customizing JXplorer 49
Why Customize the JXPlorer INTerfaCe? .. .o ettt e e e e e a e eaaeens 49
(O10 1S3 o] 0 T4 I (== o 0 1= 50
Create HTML VIieWiNg TemMPIatest e ettt et et et et et et e e e e e e e e e eaeens 52
(OIS (o] g a1 23 o I 1Y o T g ¢ PP 56
Yo (o IO U =) o o g T I Y == T =2 61
INTErNAtioONAlIZE JXPIONET ...ttt et et et ettt ettt ettt e 62
Y] o) o] YA @R U 1= o) o a1 24=To I w1 1 66
Chapter 10: How JXplorer Reads the Schema 69
Data in Each SChema ODJECTo et ettt ettt ettt et e e enes 70
Checking Entries for Schema ConformanCeooiiiiiiii i et eaaaas 71
Chapter 11: How JXplorer Handles Passwords 73
[z 1YY o I3 (o = T = PP 73
(2= T3SV o [= 1= o 1 T 74
Chapter 12: How JXplorer Handles SSL, SASL, and Certificates 77
TS = g o [0S N] 77
Manage Certificates and KEY STOIES ..ottt ettt et et e et e e et eea e eaneeeannes 79
Chapter 13: Extending JXplorer 81
Pluggable ATrDULE EQITOISttt ettt et ettt et e e e e e e e e e e eneanens 81
(24 18 To o F=T o [T = 1 Y/ Lo 1) 0] = 91
PlUug-iNS WIth Data LiSTENEIS. ...ttt ettt ettt ettt e ettt et e e ane e eanees 94
[18 T BT o E VY T I 0 == T PP 97
[IoTor= 1[4 =T) o] [0 €= gl = 6 o o 1 101

iv. Administrator Guide

WX o I o 11 o 1 1= TSR o T o W T 1 0P 102

Chapter 14: LDAP and Directory Resources 103

Contents v

Chapter 1. About JXplorer

This section contains the following topics:

What Is JXplorer? (see page 1)

What Can You Do with JXplorer? (see page 2)
Requirements and Supported Platforms (see page 2)
Supported Specifications (see page 3)

What Is JXplorer?

JXplorer is an open source Java application that allows you to browse and
search any LDAP directory.

It displays the structure of the directory data as a tree view in the left panel,
and the data of any particular entry in the directory in the right hand pane.

EﬂJXplurer
File Edit ¥iew Bookmatk Search LDIF Options Tools Secutity Help
FFE taeE X D= |4+ 0

tn v[= i~ | Quick search

+E Bxplore | #4 Results| T Schema HTML View | [E Table Editor

1@ wora ~|[| < [inetorgPersantuain.trml v
AU

= £ DEMOCORP £) —
£, Corarate s eTrust ™ Directory - JXplorer

inetOrgPerson

Building Services gJusa this page to modify your entry, This page contains the main information
Communications far the entry, Use the buttons on the top right of the page to navigate to the
Data Caollection rest of the entry.
Ka ME

®
=

el
Ken PARKINSON
Keryn YINCENT — Photo: Image N/A
Kev MACKENZIE Common Name:| [<atrina SIMMONS |
Kirk PIDOTO
Kit CHISHOLM
Klara MONTGOME
Head Office
Intarnal Surname:| 5|MMONS |
Mainland

. Maintenance " hdl Initials:| |

Connected Ta ldap ACOMPO1:19288"

Given Name:‘ |

EHEEE

JXplorer includes a number of directory-related utility functions, such as
secure SSL connectivity, LDIF file reading and writing, graphical cut, copy,
paste, and delete, and the Unicode international character set.

JXplorer has advanced security integration and support for the more difficult
and obscure parts of the LDAP and DSML protocols.

About JXplorer 1

What Can You Do with JXplorer?

What Can You Do with JXplorer?

With the JXplorer browser, you can:

Connect to any directory that supports LDAP and navigate, search, and
modify the directory.

Read the directory's schema directly, rather than relying on schema
configuration files.

Visually cut, paste, and edit subtrees in the directory, including drag and
drop on Windows platforms.

Import and export LDIF files from a directory and even view them offline.

Configure the browser in many ways, including its appearance and logging
information. For example, you can configure the look of the browser to a
company standard by using company-specific icons for the directory and
company graphics within the HTML templates.

Display directory data within configurable HTML templates using a simple
extension to the HTML language.

Run in debug mode, permitting full tracing of the LDAP BER protocol.

Run on a wide variety of operating system platforms, since JXplorer is
written in the Java programming language.

SSL to communicate securely, and SASL for secure certificate-based
authentication.

Requirements and Supported Platforms

JXplorer has been tested and run on Windows, Solaris, Linux, OS390, and
Macintosh OSX.

Because JXplorer is a Java client, it can also be run on any platform that
supports Java. This is up to developers to test for themselves.

JXplorer uses Java 1.4.2. To check what version you are running, go to a
command prompt and type:

java -version

2 Administrator Guide

Supported Specifications

Supported Specifications

JXplorer supports the following LDAP specifications:

RFC 2251:
RFC 2252:
RFC 2253:
RFC 2254:
RFC 2255:
RFC 2256:
RFC 2849:

Core LDAP description
Attribute syntax

UTF-8 distinguished names
Search Filters

LDAP URLs

Default LDAP user schema

LDIF file format

JXplorer also supports the DSML 2.0 specification: Directory Services Markup
Language v2.0.

About JXplorer 3

Chapter 2: The JXplorer Browser

When you start JXplorer, the main browser window appears.

The menu bar at the top of the browser provides access to a full range of
browser functions through pull-down menus.

Two toolbars below the menu bar give shortcuts to commonly used functions.
The first is a button bar, with shortcuts to commonly used menu functions.
The second, the quick search toolbar, lets you quickly execute simple searches
(such as searching a directory for an employee's name).

The status bar at the very bottom of the browser displays the status of the
browser. For example, it shows whether the browser is connected or not.

The main body of the browser is divided into two panes. The left pane is the
directory tree, which you can navigate by using the mouse to click the entries.
The right pane shows the selected entry from the directory, shown either as an
HTML page or as a table of attributes and values.

This section contains the following topics:

The Tree Pane (see page 5)
The Quick Search Bar (see page 9)
The Entry Display (see page 10)

The Tree Pane

The tree display pane (the left pane) displays the directory tree, and allows
you to graphically browse the directory. There are usually three tree views
available:

Explore

Displays the data in the current directory
Results

Shows the results of the most recent search
Schema

Displays the schema currently in use by the directory

The JXplorer Browser 5

The Tree Pane

The Explore Tree

In the Explore tree, you can browse the directory tree:

= Explare | @ Results | & Schema

e wiorld ~
= Ay
= & DEMOCORP
%Cmparate
= Customer
= & Applications

Cora BALDVWIN
Kath HOPKING
Linsie HOWARI
Lucinda BARBE
Ross MCCRAC
Tracey CROSB —

Consulting

Cantracts
nternational
Matianal v

You can also display the schema rules for this directory by clicking on World,
which is always shown at the top of the Explore pane:

%2 JXplorer (=63
File Edit View Bookmark Search LDIF Options Tools Security Help
F&fFE ihbaE X D= £ 0

n vl v | Quick Search
v Explare | g Results| @ Schema HTML View | B Table Editar
§|Simp|e.htm| ¥
st dxServeriersion & Dixserver r8.1 (build 689) Windows_NT/Ingres 32-Bit e’

& DEMOCORP

#{1.36141.1466.115.121.1.4 DESC "Audin’)
#(1.3.6.1411466,115121.1.5 DESC 'Binary")
#(1.3614.1.1466.115121.1.7 DESC 'Boolean’)
#(1.36.1411466,115121.1.8 DESC 'Certificate’)
#(1.3614.11466.115.121.1.9 DESC 'Certificate List')
#(1.36.1411466115121.1.10 DESC 'Certificate Pair')
#(1.36141.1466.115121.1.12 DESC 'DN')
#(1.36.1411466115121.1.14 DESC 'Delivery Method') n
#({1.3614.1.1466.115.121.1.15 DESC 'Directory String')
#®0(1.36.14.1.1466,115.121.1.22 DESC 'Facsimile Telephone Mumber')
#(1.36141.1466.115.121.1.23 DESC 'Fax')
#(1.361411466,115.121.1.24 DESC '"Generalized Time')
#(1.3.614.1.1466.115121.1.25 DESC '"Guide')
#(1.361411466,115121.1.26 DESC 'IAS String’)
#(1.3.614.1.1466.115.121.1.27 DESC 'INTEGER')
#(1361411466,115121.1.28 DESC 'JPEG')
#(1.36141.1466.115.121.1.36 DESC 'Mumeric String')
#(1.3614.1.1466,115.121.1.38 DESC '"0ID") w

ldapSyntaxes

Connected To ldapJfCOMPO1:192589°

6 Administrator Guide

The Tree Pane

The Results Tree

Regardless of whether the search is run using the quick search bar or a search
menu option, once it is run the matching entries are displayed as a results tree

in the Results view of the directory tree pane.

o Explore | dh Results I% Schema

<

9 o
= Ay
= &

tld

DEMOCORP
Customer
& Support
Bryan BRANCH
= g Human Resources
& Occupational Health
Kristine BRANDON
= & Manufacturing
& Support
Anna BRAND

=]

] m &

m

KMumber of search results: 3

Parents of search results appear as empty entries in the tree. You can browse
and save the search result tree (including LDIF format) just like the directory
tree. You can edit the results.

You can set the number of entries returned from a search, and the timeout.
See Search Limits (see page 24) for more information.

The JXplorer Browser 7

The Tree Pane

The Schema Tree

In addition to viewing the data entries held in a directory, you can directly
view the schema that is read from the directory.

The Schema pane lets you examine attribute definitions, class definitions, and

syntax definitions.

ofE Explore | gy Results |
i iorld
= schema
QY attribute Types
&Y dITStructureRules
QY |dapSyntaxes
EL nameForms
= &Y ohjectClasses

4 drsDamain
AL document

O R R E
i
o
i)
el
o
9]
i)
[

L documentSeties

W

Note: Some of these options may not be available with directories other than
eTrust Directory, because not all servers implement full schema publishing.

You can display schema entries either in the HTML View tab or the Table Editor

tab.

Unlike the other tree displays, however, you cannot edit the schema directly
through the browser. For security and administration reasons, many servers
do not permit their schema to be edited online and require an administrator to
perform schema maintenance at the server.

You can export schema to an LDIF file, but this is not the usual way to store
schema information and most directories cannot use it without further

processing.

8 Administrator Guide

The Quick Search Bar

The Quick Search Bar

The quick search bar lets you execute simple searches.

“cn . w |~f vl bernies Quick Search
Attribute list Search Search Term hox
Operator list

The operators are:

® Equal to =

® Approximately equal to ~=
® Greater than or equal to >=
® |ess than or equal to <=

® Not equal to (=)

The JXplorer Browser 9

The Entry Display

The Entry Display

The entry display pane (the right pane) displays the currently selected
directory entry, either in an HTML template, or in an editable table of
attributes and values.

When you select an entry, whether from the Explore view, the Results view, or
even the Schema view, the browser queries the directory for the attribute
values of the entry and displays the results in the entry display pane. The

results can be displayed either in the HTML template view or in the
attribute/value table view.

The HTML Viewer

The following is an employee record displayed in an HTML template. The
template contains three tabs (Main, Address, and Other) that display the
attribute information for the selected entry.

.":‘I!JXplnrer

File Edit “Wiew Bookmark Search LDIF Options Tools Security Help
SFE s DBBRE X D=E & 0

©n v |nc vI bernie 5 Quick Search
o Explore | @y Results | @) Schama HTML View | 3 Table Editor
lB World o ‘metorgPerann\Main htrnl v
= Pmau ~ 2
= & DEMOCORP .(a\ . =
Comorate e eTrust ™ Directory - JXplorer
Custamer
Engineering inetOrgPerson
Human Resources
Manufacturing
Operations
Planning &lise this page to modify your entry. This page contains the main information
Projects far the entry. Use the buttons on the top right of the page to navigate to the rest
Aviation of the entry.
= %Cnnstruchnn
Anita MATTHEWS

Antoinette WWEISS

K]

GAN
Fleur STROMMER
Johannes COURT
Joscelyn HACKING
Judy GARFIELD
Juliet PILKINGTON
Lotelle PRESCOTT
Therese HATHAWAY
Tina LENNOK

Trawis DOVWNEY
Zoa MCKENZIE
Defence

Food

Maritime Common Name:l Bermd STARK |
Miscellaneous =
MNetwaork Management Given Name:l |
Project Management

Real Estate
Technology - 5“"“a“f“3=| STARK |

Photo:

Connected To ldap:ACOMPO1:19289"

10 Administrator Guide

The Entry Display

HTML Templates

When the browser initially reads an entry, it attempts to find an appropriate
HTML template in which to display the entry, as follows:

® The HTML templates key on the object classes of the entry, with each
HTML template specializing in displaying one object class.

® Each object class can have multiple HTML templates capable of displaying
it.
® HTML templates for a given object class can also display entries whose

object classes are inherited from that object class.

® When you select an HTML template for a particular entry, the browser
remembers that template and uses it for other entries of the same object
class.

The number of attributes and how they are displayed depend on the HTML
template. When the HTML template does not have a tag for a particular
attribute, that attribute is not displayed. A tag is available for displaying all
attributes that have values. The tag is used to simplify the display of large
numbers of attributes.

This use of HTML templates enables:

® Different types of entries to be displayed in ways appropriate to their type
® Sijte-specific help information to be included in the HTML

® HTML hyperlinks to be used to link to existing company resources

® Straightforward customer configuration of data display

® Special purpose templates for different types of users (administrator, help
desk, office staff, and so forth)

® Use of corporate branding and logos

The JXplorer Browser 11

The Entry Display

The Table Editor

The same employee record can be edited and displayed in the table editor.

You can also use it to view the attributes an entry can contain, because it uses
schema to show all the possible attributes that the entry might have.

Attributes in bold represent mandatory attributes - these must be present for
the entry to be valid. Click the Properties button to display operational
attributes such as the date of the last modification.

.":‘I!JXplnrer

File Edit “Wiew Bookmark Search LDIF Options Tools Security Help
SFE s DBBRE X D=E & 0
©n v |nc vI bernie 5 Quick Search
o Explore | @y Results | @) Schama HTML View | 3 Table Editor]
lB World ||| attribute type walug
= Pmay cn Bernd STARK ~
=] ,& DEMOCORP ohjectClass inetQrgPerson i
orporate sn STARK
ustarmer description Railways
ngineering ipegPhoto (non string data)
uman Regources mail Bernd. STARK@DEMOCORP.com
anufacturing postaldddrass 221 Glen Boulevard$Griffith NSW
arketing postalCode 2680
perations |telephonemumber 636 BB6T
lanning title Communications Engineer
=] rojects audio
if\watiun businessCategany
= Construction carlicense
Anita MATTHEWS departmentMumber
Antoinette WEISS destinationindicator
displayMarme
employeeumber
Fleur STROMMER employeeType
Johannes COURT facsimileTelephoneMumber
Josceln HACKING givenName B
Judy GARFIELD homePhone
duliet PILKINGTOMN homePostalAddress
Lorelle PRESCOTT initials
Therese HATHAWAY internationaliSDNMurmber
Tina LENNOX |
Travis DOWINEY labeledUri
g Zoe MCKENZIE rmanager
Defence mobile
Food 0
Maritime ou
Miscellaneous |l [[pager
Netwark Management phaoto)
Project Management
?;;:fns‘tﬂa; 3 Submit] [Reset] [Change Class] [Properties
Connected To 'ldapfCOMPO1:18288"

You can configure the table viewer to include custom binary editors, which
may be the only way to view complex or application-specific binary data.

12 Administrator Guide

Chapter 3: Connecting to a Directory

This section contains the following topics:

The Connect Dialog (see page 14)
Security Levels for LDAP Connections (see page 15)
Save Connection Details in a Template (see page 16)

Connecting to a Directory 13

The Connect Dialog

The Connect Dialog

When you connect JXplorer to a directory the browser displays a connection
dialog, requesting the information that JXplorer needs to connect to a
directory:

Host

The name of the computer that hosts the directory.
Port

The port number of the DSA on that computer
Protocol

The protocol that is in use, which can be LDAP or DSML. For LDAP, this is
usually Version 3, but can be Version 2 to support older directories.

If you select DSML, you also need to enter the path to the DSML service.
DSML Service

The path to the DSML service dsml/services/DSML
Base DN

(Optional) The base distinguished name of the directory.

If none is given, the browser is still able to connect, providing that the
directory is one (like eTrust Directory) that makes this information
available.

Security
Level

The security level with which you want to connect (not applicable to
DSML).

You can connect to the directory anonymously, or with your user name
and password. If you require higher security, you can establish a link
to the server using SSL with either of these methods. When a client
keystore is available, you can use full client-authenticated SSL,
combined with SASL authentication at the directory.

User DN

Password

14 Administrator Guide

Security Levels for LDAP Connections

B3 Open LDAP/DSML Connection

X

Host: camp0i| Port: 19780
Fratacal: LOAP w3 hd
DEML Service:
Cptional Values
Base DN: c=AL
Security
Level: Anonymaus hd
User DMN:
Fassword:
Use a Template
Router A4 ’ Delete ” Default
’ QK] [Cancel] [Help

Security Levels for LDAP Connections

When you use JXplorer to connect to an LDAP server, you can choose the level

of security for that connection:

Security Level

Description

Anonymous

Connects to the directory anonymously.

User + Password

Connects to the directory using your user name and password.

SSL + Anonymous

Connects to the directory anonymously via an SSL link.

The SSL connection uses either the trusted public certificate of the directory
server, or the public certificate of the directory server's certificate authority.

SSL + User +
Password

Connects to the directory using your user name and password via an SSL link.

The SSL connection uses either the trusted public certificate of the directory
server, or the public certificate of the directory server's certificate authority.

SSL + SASL +
Keystore Password

Connects to the directory via an SSL link.

The SSL connection is authenticated using either the trusted public certificate
of the directory server (or the public certificate of the directory server's
certificate authority), and the client's trusted public certificate (or the public
certificate of the client's certificate authority), and the client's private key.

GSSAPI

Basic GSSAPI/Kerberos support

Connecting to a Directory 15

Save Connection Details in a Template

Save Connection Details in a Template

JXplorer lets you save connection details for commonly used directories as
connection templates. You can save any number of connection templates, and
you can edit or delete them at any time, using the list at the bottom of the
Connection dialog:

Fassword: | |

Llse a Template

| save |DEMOCORP v | Delete || Defaut

Rauter

DEMOCORP B
DSmL E!

LabTrack

You can also choose to make one of the connection templates a default
template. After you specify a default template, the connection dialog opens
with the details from that template already filled in.

16 Administrator Guide

Chapter 4: Searching a Directory

In JXplorer, you can search for an entry in two ways:
B Quick search using simple criteria

B Complex search using a wider range of criteria. You can save complex
searches as filters, join these filters to create new searches, or write your
own LDAP filters.

The search results are displayed as complete directory trees, which lets you
browse large numbers of search results.

You can save the search results as LDIF files.

This section contains the following topics:

Quick Searches (see page 17)
Complex Searches (see page 18)
Search Operators (see page 22)
Search Limits (see page 24)
Bookmarks (see page 24)

Quick Searches

You can quickly execute simple, single-attribute-value searches using the
quick search bar, which contains a pull down list of common attribute types.
You can add attributes to this list; the browser saves changes to the list when
you exit the browser.

The quick search bar makes it possible to do common searches, for example,
specific employee names, part numbers, and so on, without having to access
the menu bar or enter a complete LDAP-format search request.

Searching a Directory 17

Complex Searches

Complex Searches

You can perform more complex searches using the Search dialog.

Filter Marme: Untitled
Start Searching Fram: | c=AL

Alias Options Search Level

[[] Resalve aliases while searching. Select Search Level:

[] Resolve aliases when finding base object, | | [Search Full Subtree

Information to retrisve: (Al

| <= Build Filter | £ Join Filters | B Text Filter
[raot Mare

Less

i L

|sn V||EleginningWith v|| |
[Search][Cancel][Help]

The Search dialog lets you search one of the following:
® The selected entry
® The next level from the selected entry, but not including the selected entry

® The full subtree

18 Administrator Guide

Complex Searches

Choose Which Attributes to Return

When you search a DSA, you can define which attributes you want to have
returned. The default is none.

To create these definitions, choose Return Attribute Lists from the Search
menu:

('aﬂ Return Attributes

Name:|H0medetails |[Save][Load][Delete]

Available Attributes: Selected Attributes:
fax ch
friendlycountryname homePhane
generationQualifier homePostaladd
givenklame
homePhone
homePostaliddress
hiost

haugeldentifiar L
< | >

13

I 014 ” Cancel ” Help]

You can then use the Information to retrieve drop-down list in the Search

dialog to select the definition that contains the list of attributes you want
returned:

('-ﬂ Search

Filter Name: | Untitied |

Start Searching From: | 0=DEMOQCORP, c=AL |

Alias Options Search Level

l:‘ Reszalve aliases while searching. Select Search Level:

[] Resalve aliases when finding hase ahject. |593"Ch Full Subtree "|
Information to retrieve: [RI0y1E]
D e L1
| i titer | &5 Joi Horme details
[Mot

Save

|5n v”Eleginning With v” |

’ Search ” Cancel H Help]

Searching a Directory 19

Complex Searches

Save Searches for Later Use

JXplorer lets you save searches as filters for later use. Your saved searches
appear in the Search menu, so you can access them quickly.

With saved searches, you can:

Save any number of searches as filters
Edit or delete them at any time
Copy searches for modification, and save them under a different name

View saved search filters

Filter Mame: | Postcode = EDDD |
Starl 58 —rr= ORP c=AU |

Alias Options Search Level

[] Resalve aliazes while searching. Select Search Level:

[] Resalve aliases when finding base object. |Search Full Subtree v|
Information to retrieve: |Nnne Vl

| <= Build Filter | £ Join Filters |) Text Filter

[ot [more |
¥ e /’E>

|pnsta|00de V||EquaITD V|| 20M) Sl

’ Search ” Cancel ” Help]

20 Administrator Guide

Complex Searches

Write Your Own Searches

The Quick Search bar and the Search dialog are useful for helping you to build
filters.

However, if you already have an LDAP search filter, you do not need to re-

create it in one of these dialogs. Instead, you can use the Text Filter tab in the
Search dialog:

Filter Marme: | Untitied |

Start Searching From: | 0=DEMOCORP =AU |

Alias Options Search Level
[] Resalve aliases while searching. Select Search Level:
[] Resalve aliases when finding base abject. |SeamhFuHSubnee v|

Information to retri

Tild Filter | £ Join Filters| B Test Fitter |

Mare

[&(title=*engineer*) (postalCode=%2194%}]
Less

Save

Load

WiE

Search H Cancel ” Help]

Searching a Directory 21

Search Operators

Search Operators

The following table lists the operators you can use in JXplorer searches, and
the effects of these operators. Try applying these example filters to the
Democorp DSA.

In the
Quick

In the Search
dialog

Search bar

Example Filter

Result of Example Filter on Democorp
Data

Beginning With sn=Br* All entries with a surname that begins
with Br, including Bruce, Brazier, and
Bradley

Not Beginning (!(sn=Br*) All entries other than those in which the

With surname begins with Br

Containing sn=*JOR* All entries with a surname that includes
the letter JOR, including Major, Jordan,
and Jorgenson.

Not Containing (!(sn=*a*)) All entries with a surname that does not
contain the letter a

Equal To = sn=marten All entries with a surname of Marten.

Not Equal To ~= (!(title=Secretary)) All entries with a title other than
Secretary.

Ending In sn=*s All entries with a surname that end with s,
including Lucas, Watts, and Giddings

Not Ending In (!(sn=%*s)) All entries with a surname that do not end
with s

Greater Than or >= sn>=w All entries with a surname starting with w,

Equal To

and any subsequent letter of the
alphabet, including Whittle, Young, and
Ziegler

postalCode=>=6000

All entries with a postalCode greater than
or equal to 6000, including 6000, 6018,
and 7000.

Not Greater
Than or Equal
To

(I(sn>=w))

All entries with a surname starting with
any letter after w, but not including w.

This operator is equivalent to "less than".

(!(postalCode>=2000))

All entries that have a postalCode less
than 2000, including 0810, 0860, but not
2000.

This operator is equivalent to "less than".

22 Administrator Guide

Search Operators

In the Search In the Example Filter Result of Example Filter on Democorp
dialog Quick Data

Search bar
Less Than or <= sn<=b All entries with a surname starting with
Equal To the letters up to b, including Anderson,

Ash, and B. This does not return entries
starting with b and followed by other
letters. That is, this search would not
return Baker.

postalCode<=2000

All entries with a postalCode less than or
equal to 2000, including 0810, 0860, and
2000.

Not Less Than
or Equal To

(!(sn<=b))

All entries with a surname starting with
any letter before b, but not including b.

This operator is equivalent to "greater
than".

(!(postalCode<=2000))

All entries that have a postalCode less
than 2000, including 0810, 0860, but not
2000.

This operator is equivalent to ""greater
than".

Present sn=* All entries with a surname. In the
Democorp DSA this returns all of the leaf
entries.

Not Present I(sn=%*) All entries with no data in the attribute sn,

and all entries that do not have the
attribute sn

Similar To ~=

sn—=marten

All entries with a surname that sounds like
marten, including Martin, Martyn, and
Martinez

Not Similar To

(!(sn—=marten))

All entries with that do not have a
surname similar to marten, including
entries that do not have the attribute sn

Searching a Directory 23

Search Limits

Search Limits

Bookmarks

JXplorer lets you define the maximum number of entries returned from a
search, and the time (in seconds) allowed to perform the search.

You can set these options from the Advanced Options dialog, which can be
accessed via the Options menu. To select the search limits, click on the Search
Limits tab, select the LDAP limit and LDAP timeout that you want, and then
click the Apply button. To revert the search limits back to the last saved
version click the Reset button.

Values can also be set in the server configuration (.dxc) files. When values are
set in JXplorer and the server configuration files, the lower of the two values is
accepted.

A bookmark is an entry in the directory that you identify and name for future
reference. You can use a bookmark to quickly jump to an entry.

2 IMM’ Search LDIF Options Tc

% + Add Bookmark Ctri+B
— ¥ Delete Bookmark
47, Edit Bookmark

ch=Craig LIkK

cn=Kenny WILKINGON

WMOC ou=Corporate and Industry

[ldanlez 10z T

24 Administrator Guide

Chapter 5: Editing the Directory

You can modify entries in the directory using the browser in many ways,
ranging from slight modification of a single attribute value to large-scale tree
operations affecting many thousands of entries.

JXplorer lets you cut, paste, and delete entire directory subtrees using the tree
pane on the left. You can manipulate individual entries using the table editor.

You can rename entries from either the directory tree pane or the table editor,
depending on what is most convenient at the time.

This section contains the following topics:

Directory Tree Operations (see page 25)
Modify Attributes in an Entry (see page 28)
Attribute Editors (see page 31)

Binary Values (see page 35)

Add a New Entry (see page 37)

Submit an Entry to the Directory (see page 38)

Directory Tree Operations

As you browse the directory tree, you can modify the directory using any of
these items::

" The menus
" The toolbars
= Dragging and dropping

® The context menu (accessed by right-clicking on the entry) for the entry in
the tree itself

Important! This is a very powerful tool, and you can affect large areas of
the directory with a single operation. To avoid accidents, you should select
Confirm Tree Operations on the Options menu.

Editing the Directory 25

Directory Tree Operations

Cut, Copy, Paste, and Delete

You can manipulate the directory tree using the cut, copy, paste, and delete
operations. On Windows platforms, you can copy and move entries by
dragging them with the mouse (“drag and drop”). These operations can be
carried out on individual entries within the directory tree or on whole subtrees.
Since most directories do not natively support operations on entire subtrees,
the client reads and writes all subtree entries recursively, enabling operation
on all types of LDAP-compliant directories.

When you select (and therefore display) an entry, all cut, copy, paste, and
delete operations occur relative to this selected entry. Specifically:
Delete
Removes the selected entry and any subentries
Copy Branch
Copies the selected entry and any subentries
Cut Branch

Prepares the selected entry and any subentries to be moved to a new
location

Paste Branch

Either moves or copies a previously cut or copied entry (and any
subentries) under the selected entry as child entries

Since some subtree operations involving large numbers of entries can take a
significant time to complete, the browser displays a progress bar if it estimates
that the operation is extensive.

The progress bar displays the number of entries processed and estimates the
proportion of the operation completed. When you want to stop the operation,
you can either click Cancel in the Progress, or click the Stop button on the
quick search toolbar. When you do this, any changes already made will be
kept.

26 Administrator Guide

Directory Tree Operations

Rename Entries in the Directory Tree

To change the name of an entry, you need to change the value of the naming
attribute. The naming attribute is the single attribute used to uniquely identify
each entry in the directory.

JXplorer lets you rename an entry within the directory tree by selecting the

Rename option:

< UTRUTALE
o -)
=, Administration
Bg TS

|businessCateg0r
mail

+ Addto Bookmarks Cirl+B

Cirl+F
Crl+N
Cirl+y
Crl+1)
Cirl+0

T

Cirl+D

+ &g Dot
& Ga

] Search
= Jnd #A
2 Bgoui O MNew
BhKey B3 copyDN
&g Mal
= Mel # CutBranch
B Nac BB Copy Branch
8 BVM R el B
: IFnlpuE:nmCI M Faste Alias
& Investn 2 Delete
7 Manag k
T puplicy P Refresh

Ctri+R

You can then type a new name for the entry. JXplorer then changes the
naming attribute of the entry to the new name.

The naming attribute of an entry is shown in blue in the Table Editor:

,'-ﬂJXplurer
File

S&FE& shbEaE X D= £ 0

CBEX

Edit ‘“iew Bookmark Search LDIF Options Tools Security Help

| Quick Search

e vl= v
v Explore | @y Resuits | @ Schema HTML view/| E2 Table Editor |
World A Ll aitiidpetemrmre o
g (T cn CraigLINK > .
= & DEMOCORF ohjeciCrass TetOraFerson 3
=] ,&, Corparate sh LIMKE
= & Administration businessCategory Moo
- mail Craig. LINK@DEMOCORP.com W
postalAddress A3 venton RoadfHobart TAS
postalCode 7000
telephonerMumber 544 3697
| |title Group Secretary
Kevin LUCAS audio
Ml BAIL carLicense
Melindie LYNCH departmentiumber
Natdia KITE description
€ vivienne LEVER destinationindicator =

Finance
nformation
nyestments b

supmit || Reset ||

Change Class | | Properties

Connected To 'ldapiALBMED3-XF: 19389

Editing the Directory 27

Modify Attributes in an Entry

When a parent is renamed, the DNs of the entries in the entire subtree under
the parent also change.

If you rename an entry with subordinates, the subordinates are also renamed.

Modify Attributes in an Entry

You can modify entries in the table editor, which is a simple tabulated list of
attribute names and corresponding attribute values. From the table editor, you
can:

® Edit existing values

® Add new attribute/value pairs

®m Delete attributes and values

B Copy and paste attribute values

® Manipulate binary attributes

B Submit the results to the directory

® Add or remove naming attributes

These user modifications do not affect the directory until the entry is
submitted. When you have finished modifying the entry and checked your

work, click the Submit button to send the changed entry to the directory. Only
at this point is the data in the directory changed.

Change Attribute Values

You can edit existing values where they are by selecting the appropriate cell in
the table and retyping the value.

Note: Binary values, attributes that contain an address, and user passwords
are handled differently. See Using Binary Values (see page 35), Using the
Postal Address Editor (see page 33), and Entering a User Password (see
page 34) for more information.

28 Administrator Guide

Modify Attributes in an Entry

Delete Values and Attributes

You can delete values (including binary values) using one of the following
methods:

® Select the text in the cell, and then press the Delete key to leave an
empty cell.

® Right-click on the table row, and then choose Delete Value Attribute from
the Context menu.

When you delete the last value of a given attribute, the attribute is also
deleted; however, it is not possible to delete the last value of a mandatory
attribute, and the browser does not let you submit an entry that does not
include mandatory attributes, unless the Ignore Schema Checking option is
active. See Mandatory Attributes (see page 29) for more information about
mandatory attributes.

Add Values and Attributes

When an attribute does not already have a value, but is available to a
particular entry type, you can create it by finding the attribute in the list of
blank-valued attributes at the bottom of the table and filling in the missing
value. When an attribute already exists and has values, you can add a new
value by right-clicking on the attribute hame and choosing Add Another Value
from the Context menu.

You can add new binary values and addresses this way. See Using Binary
Values (see page 35) and Using the Postal Address Editor (see page 33) more
information.

Mandatory Attributes

Some attribute names are represented in bold type. These are mandatory
attributes, which must have at least one value for the entry.

The browser does not submit an entry if it has any mandatory attributes
without at least one value, unless you have selected Ignore Schema Checking
on the Options menu..

Editing the Directory 29

Modify Attributes in an Entry

Naming Attributes

Change Classes

Some attributes are used to name an entry, by forming its relative
distinguished name (RDN). Each entry must have at least one naming
attribute. Although attributes can have more than one attribute value, only
one of these can be chosen as the naming attribute. For example, common
name may have two values, Fred and Freddie, but only one can be used as the
naming attribute.

To make an entry a naming attribute, select the entry in the table editor,
right-click the mouse button, and choose Make Naming Value from the Context
Menu. Naming attributes are displayed in the table editor in blue. Multiple
naming attributes appear in the tree display with a + symbol joining them.

For example, you may want to name a person by the commonName, or cn
attribute, and the surname, or sn attribute. In the case of Craig Link, Craig
LINK is the value of the cn naming attribute, and LINK is the value of the sn
naming attribute. Both entries appear in the table editor in blue, and in the
tree display as Craig LINK + LINK. The order in which the naming attributes
appear in the tree display depends on the order in which they are originally
entered into the directory.

The object class attribute of an entry determines the attributes that are
available for an entry; therefore, you must modify them separately using the
Change Classes button, located at the bottom of the table editor. This displays
the same list of available object classes as is available in the New Entry panel.

Important! You must be careful when deleting object class values because
you also remove all related attributes.

30 Administrator Guide

Attribute Editors

Attribute Editors

Some attributes cannot be easily edited in the Table Editor fields. Instead,
JXplorer provides special editors for some kinds of attributes and syntaxes.

When you click on any of the following attributes, an appropriate editor is
launched:

m userPassword

= userCertificate

® odSpreadSheetXLS

= odSoundWAV

= odMusicMID

= odMovieAVI

® odDocumentDOC

® ocspRSAPrivateKey

® jpegPhoto

= audio

When you click on any attribute with one of the following syntaxes, and
appropriate editor is launched:

m 1.3.6.1.4.1.1466.115.121.1.24 Generalized Time

m 1.3.6.1.4.1.1466.115.121.1.41 Postal Address

m 1.3.6.1.4.1.1466.115.121.1.8 Certificate

m 1.3.6.1.4.1.1466.115.121.1.5 Binary

m 1.3.6.1.4.1.1466.115.121.1.7 Boolean

Editing the Directory 31

Attribute Editors

Work with Audio Files

JXplorer lets you import and export audio files into and out of the directory,
using the Audio dialog, which is launched from the Table View:

[Plary H Stop H Help]

| Load |[save || ok |[cancel |

You can import and export audio files of any format. JXplorer also lets you play
audio files with the following formats, using the HTML view:

m aiff
= au
ot

= mid
= mp3
® ram
" rmi
= s3m
® stm
" voC
= wav
= .xm

32 Administrator Guide

Attribute Editors

Work with Photos

JXplorer lets you import a photo into the directory, and display it in an HTML
template. In table editor view, the photo is displayed using the photo editor:

JXplorer lets you import photos through the jpegPhoto dialog, which appears
when you select the jpegPhoto attribute type in the Table Editor.

description Failways

{non string data)

[Load H Save ” 8124 ” Cancel ” Help l :

| FTTereT

All photos must be in .jpeg or .jpg format.

You can also use this dialog to save the photo to another location.

Work with Postal Addresses

All attributes that have an address value, for example, homePostalAddress,
are entered through the Postal Address Editor dialog, which appears when you
select an address field in the Table Editor:

('-:'i} postalAddress

§3 ¥Wenton Road
ohart Ta3

[ok |[Reset |[cancel |[Hemw |

The dialog lets you enter the details, as they appear in a template with the
relevant line breaks and spacing.

Editing the Directory 33

Attribute Editors

Work with User Passwords
If you use the Table Editor view to edit a user password, a dialog opens that
lets you create a new password and change the way the password is stored

(plain text, MD5 encryption or SHA encryption):

ltle Fegional Administr

LserPassword (nan string data)

E‘E User, Password Data

| Enter Passward:
| | ****#*#*******##*******###*******l |

Re-enter Passwaord:

plain v | I

’ Ok ” Cancel ” Help]

homePostalAddress

initials

If you edit a user password from the HTML view, you can only change the
password:

Destriptiﬂﬂ=| Computer Merchants

User Passwurd:| nnl

Locality Name:|

lenhone Mumhber: cen =~er

Access to an entry is controlled via the access control settings in the
directory's configuration file (.dxc). This means that you do not have to enter
the existing password before changing it.

34 Administrator Guide

Binary Values

Binary Values

LDAP is primarily a string handling protocol and many attribute values are
simple text strings. However, it is often necessary to load other types of data,
for example, certificates and images.

JXplorer allows you to load binary files to some attributes, such as jpegPhoto
and userPKCS12.

The browser also supports custom binary editors (written in Java using a
provided minimal API) that dynamically loads at run time. You key such binary
editor extensions to a particular object class. This would let you write, for
example, an editor for a custom certificate object class.

Standard editors are provided for X.509 certificates, and a number of standard
image and audio formats.

Import Binary Files

With the following Binary Data dialog, you can import and export binary files:

55 Binary Data @
Lookin: |@ cens Vl i s =]
E gary_richael.pern Options
- rarco_drew perm
My Recent
Documents ® Load
?[h
Deskiop
by
Documents
My Computer
%‘ File name: | CAProgram Files\CAleTrust Director\r‘ldxser\tensamples‘tssllcer‘[s| | Ok
Tty I etwiark)
Flaces Files oftype: |AII Files v| ’ Cancel]

Editing the Directory 35

Binary Values

Files that Can Be Launched
eTrust Directory provides the odMultimedia object class that contains attribute
types that let you launch files of the following formats:
.avi
odMovieAVI
.doc
odDocumentDOC
.mid
odMusicMID
.wav
odSoundWAV
Xls
odSpreadSheetXLS

A dialog appears when you click the value field of one of these attribute types
in the table editor.

36 Administrator Guide

Add a New Entry

Add a New Entry

You can add an entry by selecting the New option.
The new entry is created as a child of the currently selected entry in the tree.

When a new entry is created, you must specify the entry's RDN and list its
object classes.

E‘E S5et Entry Object Classes

Suggest Classes?

Farent DM: |IK,Du:ﬁdministratiun,I:uu:Cnrpurate,n:DEMOCOHP,c:AU |
Enter RON: | = |

Available Classes: Selected Classes:

account

alias

applicationEntity
applicationProcess
cachethject

< | ¥

Add ” Remove

54

’ (0] 4 ” Cancel ” Help]

Choose Object Classes

When there are other children of the selected entry, the browser suggests
object classes based on those children; otherwise, you must select them. (To
turn this behavior off, clear the Suggest Classes checkbox). Since the browser
is schema aware, it can fill in any required parent classes.

The choice of object classes must conform to the restrictions laid down by the
schema. The server may also have additional schema rules restricting where
entries of a particular type are created. For example, it may not be possible to
create a country entry underneath an organizationalUnit entry.

Set Initial Attribute Values

When all information is entered in the new entry dialog, the entry is set up in
the browser, and you can fill in the entry's attributes in the table editor. Before
the entry is actually created in the directory, you must enter the information
for the attributes and submit them-especially mandatory attributes.

Editing the Directory 37

Submit an Entry to the Directory

Submit an Entry to the Directory

Once a new entry has been filled in, or an existing entry has been modified,
you must submit the result to the directory. The browser checks for
consistency using schema information (unless you have selected Ignore
Schema Checking in the Options menu), and the directory checks the entry
again when it is submitted.

If the entry is invalid, the browser reports the directory error to you, but
leaves your changes unaltered in the edit table. To discard your changes, click
the Reset button.
Submitted entries are:
® Checked for gross errors by the browser.
® Submitted to the directory through LDAP.
® Checked for errors by the directory, after which either:
— The user is informed if an error has occurred.

— If no error has occurred, the browser display tree is updated.

38 Administrator Guide

Chapter 6: Importing and Exporting
Data

You can import an LDIF file into JXplorer, edit it, and then save the LDIF file.

When JXplorer is connected to a directory, it reads the values from the
selected file and adds them to the directory, or reads the values from the
directory and writes them to an LDIF file.

JXplorer does the following:

m |ets the prefix of the DNs in the LDIF file be replaced when reading or
writing an entry to assist in data migration between directories

® Automatically handles base-64-encoded binary LDIF data

® Flags (with the help of the directory) when LDIF data entries are invalid
In addition, JXplorer provides a status display when it estimates that a large
import or export operation is taking place. The status display shows the
number of entries processed and the estimated proportion processed. Click
Cancel when you want to quit a long operation.

This section contains the following topics:

Binary Values in LDIF Files (see page 39)
Use an LDIF File Without a Directory (see page 40)

Binary Values in LDIF Files

Binary values in LDIF files are stored in base 64 format. This means that you
can copy and paste binary values between JXplorer and LDIF files with the
same ease as other string values.

For more information about base 64 encoding, see MIME (Multipurpose
Internet Mail Extensions) Part One (http://www.ietf.org/rfc/rfc1521.txt).

Importing and Exporting Data 39

http://www.ietf.org/rfc/rfc1521.txt

Use an LDIF File Without a Directory

Use an LDIF File Without a Directory

An added feature of JXplorer is that it lets you use an LDIF file directly as a
miniature directory without any LDAP connection to a directory server. Using
an LDIF file offline in this way can be useful for:

Editing during data migration
Caching data over a slow communication link
Stand-alone demonstrations (on laptops, for example)

Reviewing data before committing it to a production environment

Because there is no communication lag, you may navigate the offline LDIF file
faster than using a directory. You can also edit the LDIF file, and add and
manipulate binary values. The only restriction in the use of offline LDIF files is
that they cannot be searched. To search an LDIF file, you must load the file in
a directory (or the raw LDIF file viewed using a text editor).

40 Administrator Guide

Chapter 7: Resolving Aliases

An alias is a directory entry that contains the name of another entry. When
you search or browse a directory, you can decide whether to resolve aliases
(show the details of the target entry) or to show the details of the alias entry
itself.

Aliases are similar to shortcuts and are used in some directories to link
different parts of the tree. You can also use the Copy Branch and Copy DN
functions to copy the name of an entry for pasting into any of JXplorer's text
entry fields, or into your own documents.

This section contains the following topics:

How JXplorer Displays Aliases (see page 41)
Create a New Alias Entry (see page 42)
Resolve Aliases While Browsing (see page 42)
Resolve Aliases While Searching (see page 44)

How JXplorer Displays Aliases

Alias entries are displayed with a green icon in the tree pane. The following
screenshot shows two alias entries:

,'nﬂJXplurer

File Edit “iew Bookmark Search LDIF Options Tools Security Help

&G tbaE X DE & @

fn vl v Quick Search
ot Bxplore | @ Results | @ Schema | HTML iew | B3 Table Editor
Planning ~ f|organizationaIUninMain.htmI A4
=2 Frojects

Ko
@'9 eTrust ™ Directory - JXplorer

organizationalUnit

Hadeine FRITZ

Hazel LINDEN Main m

Howeard MORGAN
g Jenny RAYMOMD @Use this page to modify your entry, This page contains the main
Jodie KIRCHMNER information for the entry, Use the buttons on the top right of the page

Malcolm FISHER to navigate to the rest of the entry.
Matt WWERNER

Merilyn GODDARD

Michael MUSTARD =

Drganizatinn:| Transport

Descriptiun:|

Connected To 'ldapfALBMEDS-+P: 193588

You can choose to resolve aliases while browsing and while searching.

Resolving Aliases 41

Create a New Alias Entry

Create a New Alias Entry

You can create a new alias entry by copying an entry, and then using the
Paste Alias option:

EMOCORP ou
& Corporate businessCategory

2 dminj ;
+ Addto Bookmarks Cii+B by

g Cri
Do Search Cirl+F - jon
B 5a M
€ Jox O New Cirl+N_ [
BgJu 5 CopyDN Ctri+y o
l k&' ¥ CutBranch cisl |
ERLE] A
B |
Ma Copy Branch Crl+0
Ma
Bl wiv
= ,&, Financ |
Boge 7% Delete ctri+D |
Bre Rename Ctrl+it |
Gl & Refresh chi+R |
[E3] | e = TT = =13
o Bl m T

$o ety Tarrair =

Resolve Aliases While Browsing

JXplorer lets you choose whether to show resolve aliases while you are
browsing the tree.

ﬂm Tools Security Help

[« Confirm Tree Operations
Caonfirm Table Editor Updates
Ignore Schema Checking

Advanced Option

If you choose to resolve aliases, when you browse to an entry that is an alias,

the details of the target entry will be displayed. There will be no indication that
you have browsed to an alias entry.

If you choose to not resolve aliases, when you browse to an entry that is an
alias, the details of the selected entry will be displayed. This means that you
will see the DN of the target entry, instead of the details of the target entry.

Note: This only applies to browsing the tree. When you search the directory,
this option is ignored.

42 Administrator Guide

Resolve Aliases While Browsing

Example: Resolving Aliases While Browsing

This example shows part of the directory information tree for the Democorp
DSA. The tree has been edited to include the following two aliases:

B |n the Aviation subtree, a new alias entry has been created. This alias
entry points to the Bernd Stark entry in the Construction sub-tree.

B |n the Projects subtree, a new alias entry that points to the Construction
entry.

If you select Resolve Aliases While Browsing in the Options menu and then
browse the directory tree to Bernd Stark's entry under ou=Aviation, you will
see all of his details. However, if you de-select Resolve Aliases While Browsing
in the Options menu and then do the same thing, you will see the details of
the alias entry (that is, "cn=Bernd STARK,ou=Construction,ou=Projects,
0=DEMOCORP,c=AU"), but no details about Bernd Stark.

o=Democorp
ou=Projects
r———">">"="~>7="77 |
ou=Aviation | ou=Building | ou=Construction
e e] |
=TT I
| cn=Bernd Stark | cn=Bernd Stark
e e I

cn=Coral Crispin

cn=Dave Flint

Resolving Aliases 43

Resolve Aliases While Browsing

This table shows the data that will be displayed in different circumstances:

Resolve Aliases Browse To
While Browsing

Display

Selected cn=Bernd STARK,ou=Construction,
ou=Aviation, o=DEMOCORP,c=AU

Full details of Bernd Stark, as stored in his
entry in the Construction subtree

De-selected cn=Bernd STARK,ou=Construction,
ou=Aviation, o=DEMOCORP,c=AU

Details of the alias entry (that is,
"cn=Bernd STARK,ou=Construction,
ou=Projects,0=DEMOCORP,c=AU"), but no
details about Bernd Stark

Selected cn=Bernd STARK,ou=Construction,
ou=Projects, o=DEMOCORP,c=AU

Full details of Bernd Stark

De-selected cn=Bernd STARK,ou=Construction,
ou=Projects, o=DEMOCORP,c=AU

Full details of Bernd Stark

44 Administrator Guide

Resolve Aliases While Searching

Resolve Aliases While Searching

When you set up a complex search using the Search dialog, you can choose
whether to resolve aliases during the search:

Filter Name: | Untitled
Start Searching From: | 0=DEMOCORP c=AL
Alias Options

Resolve aliases while searching.

[Resolve aliases when finding base ohject.

Infrrrmating o retriows- ke

When you resolve aliases, JXplorer returns the real entry to which the alias
points. When you do not resolve aliases, JXplorer returns all alias entries as
regular entries.

However, each search operation has two components: the search for the base
object (if you specified one), and the search for the entries to return. you can
choose whether to resolve aliases in each of these components.

Resolving Aliases 45

Chapter 8: Logging and Troubleshooting

This section contains the following topics:

Logging (see page 47)
Troubleshooting (see page 47)

Logging

There are a number of logging options available, ranging from no logging at all
to complete tracing of all the LDAP communications with the directory.

The client can log data to a log file, to the console window, to both, or not at
all.

To change the level and target of the logging, use the Advanced Options

dialog. For more information, see Set the Logging Level and Set the Logging
Method.

Troubleshooting

If you experience trouble while using JXplorer, you can run the console.bat
utility provided in the JXplorer home directory, which displays any problems.

Logging and Troubleshooting 47

Chapter 9: Customizing JXplorer

You can customize the following JXplorer features:
= HTML templates
® | ogging and tracing

B Directory tree icons

This section contains the following topics:

Why Customize the JXplorer Interface? (see page 49)
Customize Tree Icons (see page 50)

Create HTML Viewing Templates (see page 52)
Customize HTML Forms (see page 55)

Add Custom HTML Pages (see page 61)
Internationalize JXplorer (see page 62)

Supply Customized Files (see page 66)

Why Customize the JXplorer Interface?

You do not have to customize JXplorer if you do not want to. JXplorer already
works with any LDAP directory.

You can already use JXplorer to modify the structure of your directory with the
tree view (cut/copy/paste/delete of entries and sub-trees), and you can edit
individual entry attribute values using the table editor.

However, you might want to customize JXplorer:

B To change the JXplorer interface

B To change the way JXplorer behaves, to provide more advanced
functionality.

Customizing JXplorer 49

Customize Tree lcons

Customize Tree Icons

You can add or modify the icons that JXplorer displays in the tree in the left
pane.

A small set of icons is included in the standard release.

v Explore | @ Results| & Schema

e ot -~
= Ay
= & DEMOCORF
& Corporate
= g Custarner
= & Applications
Cora BALDWIN
Kath HOPKING
Linsie HOWARI
Lucinda BARBE
Ross MCCRAC
Tracey CROSE"
Wara GALWAY
& vickie HEMLEY
Warren RAMSA
Consulting
Contracts
International
Mational "

o B EEEEBEEEE

4

I BEBE
N
£
i

3

The icons displayed in the JXplorer tree are stored in the icons sub-directory.

The browser reads the icons used in the directory display tree from the /icons
subdirectory of the JXplorer home directory. The icons are 16-pixel-square
images in the form:

object class name.gif

You can easily replace the icons.

50 Administrator Guide

Customize Tree Icons

Add a Custom Icon

To make sure the browser recognizes the new icons, you must restart it.

To add a new icon
1. Create a 16 x 16 pixel GIF file of the icon.

2. Give the icon the same name as the naming attribute you want the icon to
appear next to.
For example, you could create an icon named cn.gif, which would appear
next to entries that use cn as their naming attribute.

3. Save the GIF file in the jxplorer\icons directory

The next time you start JXplorer, the new icon will be used.

Display Entry-Specific lcons

The icons are linked with entries using the object class of the entry, or the
LDAP naming attribute in the lowest RDN of the entry.

For example, this means that an entry with a name
ou=R&D,o=acmecorp,c=us will be labeled with the icon
organizationalUnit.gif, or if that doesn't exist, with ou.gif. The
organizationalUnit.gif icon is shown as a gray org tree symbol in the tree
above.

Customizing JXplorer 51

Create HTML Viewing Templates

Create HTML Viewing Templates

You can create HTML templates and place them in a file directory hierarchy
under the /templates subdirectory of the JXplorer root directory. When a
shared template directory exists on the file system, you can configure JXplorer
to use that directory instead by editing the dxconfig.txt configuration file in the
JXplorer directory.

Place templates in file directories corresponding to object class names. Within
these file directories, the templates can have any name (although names that
include spaces are not recommended). Templates placed directly in the
/templates directory are common to all object classes. For example, the
following file directory structure provides a general template, two templates
for person, and a default template for organizationalUnit:

/templates/

general.html
/templates/person

employee.html

contractor.html
/templates/organizationalUnit

default.html
You can add any number of new HTML templates, including templates for
newly defined object classes by creating (if necessary) the appropriate
subdirectory under the /templates directory and placing the new HTML files in

that subdirectory. After you add new files, you may need to restart the
browser to recognize them.

HTML Tag Extensions

The HTML language is extended using a maodification to the HTML <comment>
tag to set placeholders where attribute values can be filled in.

These extension tags:

® Position individual attribute names and values in the page

® |ist of all attribute names and values to be set with a single tag

® Provide a variety of tabulated formatting options, such as HTML tables and

lists

See the JXplorer online help for more information.

52 Administrator Guide

Create HTML Viewing Templates

HTML Forms

You can also use standard HTML forms; however, you must give each form
element a name value that corresponds to an attribute, for example, title.
JXplorer will display existing values and make updates to the directory when
you click Submit.

Important! JXplorer submits the changes to the directory, not to a Web
server.

A number of example HTML forms are in the templates sub-directory. For
more information, see Customize HTML Forms (see page 55).

Customizing JXplorer 53

Create HTML Viewing Templates

Example: Customized JXplorer GUIs

There are a number of reasons you might want to change the GUI, including:

® Corporate Branding - providing a distinct look and feel for a client or a
product.

® Simpler Interface - providing tools to do commonly used activities quickly.

® Providing Extended Help - you may want to provide more information to
the user.

® Data Specific Display - you may want special icons for some types of data,
or special displays for specific entry types.

Corporate Branding Example

The following example shows JXplorer with custom icons (see page 50) and
corporate-specific graphics. These graphics were incorporated using a simple
extended version (see page 61) of HTML

htrmi view | table editor |

person_individual ;l
Computer Associates
Person Home ' Waork Delivery Advanced
Individual Record
* = fandatory Fleid
Title: I Personal Tifle

Name: ICI’aig LINK * Common Name Eg, "Robin MeLeod™

Surname: ILlNK * Surname Eg, "MeLaod”

Password: I {Usar Password
Email: ICraig.LINK@DemDCDrp.cum Email Address E g, "Some. Oneifica.com™

Mobile Phone: I Iobile Phone Mumber E g, "0400 007 007"
Pager: I Pager Mumber
Drink: I Favorifa Dvink i
pdate Feset

54 Administrator Guide

Create HTML Viewing Templates

Data Entry Example

If you were using JXplorer in a help desk or data entry environment, it is
straight-forward to build custom HTML forms that only allow data entry for a
handful of attributes, and possibly restrict the allowed values, or provide more

on screen help information.

Organisational Unit Data Set

Please Update Entry

Description

Business Category

| Quality Assurance v

Cluality Assurance
Documentation

= Software Development

Customizing JXplorer 55

Customize HTML Forms

Customize HTML Forms

You can use HTML forms to enter data into the directory. Unlike the HTML
page display, you do not need any custom tags at all; it is possible to use plain
HTML forms.

The Java HTML component does not support any active scripting. It works with
plain HTML only.

It is quite legitimate to combine the special DXAttribute tag of the previous
chapter with these custom forms.

Be careful not to include extra fields containing attributes that don't exist in
the directory. If you do this, and a user attempts to enter data into the field,
the directory will show an 'unknown attribute' error. This is not particularly
serious, but it will confuse your users.

Form elements that have a 'value=""" clause will (where possible) have this
value filled in by the existing entry value. This is not done for non-text
components however.

56 Administrator Guide

Customize HTML Forms

Example: Customized HTML

Showing the value of description:

<dxtemplate:get-attribute name="description"/>

Showing all addresses in an HTML list:
<dxtemplate:get-attribute name="address" style="list"/>
Showing all attribute values in a table:

<dxtemplate:get-all-attributes style="table"/>

Listing all available data in the entry, without needing to explicitly name the
various attributes:

Simple view: displaying all attributes...

ol * Brigitte HOUGH
description * Periodicals
mail

* Brigitte HOUGHERDEMOCORP . com

ObjectClass * inetOrgPerson

Customizing JXplorer 57

Customize HTML Forms

Sample Templates

Name the Buttons

The above page for viewing ‘person’' data was saved under /templates/person/
. Look at the existing subdirectories under templates to see some examples.

If you have a template that you want to be available for all entries, regardless
of object class, place it at the base ‘templates’ subdirectory level, and it will
always appear as an option.

Anything with a 'name’ tag is parsed as an attribute. This means that form
submission buttons and so on will be treated as attributes if they are given
names.

To avoid this, don't give your Submit buttons specific names, unless you have
a special reason to do this.

While you shouldn't give buttons a 'name' clause, you can certainly give them
a 'value' clause, to get the button to display something other than 'submit’.

Name the Form Elements

The form elements must be named after the attribute they are to modify. For
example, to modify a description attribute, you could use the following form
HTML

<input type="text" name="description" size=20 value="">

This gives a normal text input field that modifies the description attribute
when the user clicks the Submit button.

58 Administrator Guide

Customize HTML Forms

Example Customized HTML Forms

Any form component can be used, although the data returned may not always
be appropriate for a particular attribute type.

Example: organizationUnit HTML Form

The organizationUnit example HTML file shows how to use the description field
above as well as a pull-down list:

Organisational Unit Data Set

Please Update Entry

Description

Business Category

| Quality Assurance i

Quality Assurance
Documentation

= Software Deselbpment

You must use the normal HTML form syntax, including a submission URL.
However, the form does not get submitted to that URL - JXplorer intercepts
the submission event and parses the data itself.

Customizing JXplorer 59

Customize HTML Forms

Example: Script to Create HTML Form

The following code is the script used to generate the directory-enabled HTML
form shown above. It is a complete HTML page, including both an attribute tag
and a form.

<html>

<head><title>First Template</title></head>

<body bgcolor="#DDFFDD">
<h1>0rganisational Unit Data Set</hl>
<h2><dxtemplate:get-attribute name="ou" style="list"/></h2>
<p>
<h1l> Please Update Entry </h1l>
<table width=200 border=3 bgcolor="#DDDDFF">

<tr>

<td>

<form name="temp" action="http://www.pegacat.com" method=get>
<h3>Description</h3>
<input type="text" name="description" size=20 value="">
<h3>Business Category</h3>
<select name="businessCategory">
<option value="Quality Assurance">Quality Assurance
<option value="Documentation">Documentation
<option value="Marketing">Marketing
<option value="Software Development">Software

Development</select>

<p>
<input type="submit">

</form>

</td>

</tr>

</table>
</body>
</html>

60 Administrator Guide

Add Custom HTML Pages

Add Custom HTML Pages

JXplorer loads HTML pages into the HTML view panel based on the object
class(s) of the entry being viewed. For example, when viewing a 'person’
entry, it looks for a 'person’ subdirectory under the 'templates’ subdirectory,
and lists all the available html files within that person subdirectory as options
to the user.

Within these HTML files, an 'extended' HTML tag is used to allow the display of
entry data. Within the HTML code, the following tag may be used:

<dxtemplate:get-attribute name="[attribute name]" style="[display typel"/>.

[Attribute name] is the exact name of the attribute to display values of. The
optional

[display type] is one of either 'list’, ‘table’, or 'plain’, which sets how multiple
values will be displayed. To show a list of all available attributes. To display all
the attributes and their values a similar tag is used:

<dxtemplate:get-all-attributes style="[display type]"/>

You can insert hyperlinks in your HTML pages. For example, you could link to
extended help, or further resources.

However, that the Java HTML component does not support Javascript or VB
script, and is not as robust as a commercial web browser.

Customizing JXplorer 61

Internationalize JXplorer

Internationalize JXplorer

It is easy to add new languages to JXplorer. You can choose what parts of
JXplorer you internationalize.

You can internationalize the following:

The HTML templates
This means that the text strings on each JXplorer page appears in the new

language.
The Welcome page

The online help

Translate HTML Templates

To internationalize an HTML template

1. Create the new templates in UTF8, 16 bit UNICODE, or a local encoding

(such as Shift-JIS in Japan).
UTF8 is preferable, because local encodings won't work outside computers

set to that locale.

If you want to check your work in an English-language browser, make sure
you use the correct HTML meta header. For example:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

62 Administrator Guide

Internationalize JXplorer

Translate Help Files

The online help system for JXplorer uses the JavaHelp 1.1.3 format. The online
help is supplied as a helpset.

To internationalize the JXplorer online help

1. Create an new version of the help in a different language.

2. Give the root 'helpset.hs' file a country-specific name of 'JXplorerHelp_[my
language].hs'. For example, the Chinese helpset would be named
JXplorerHelp_ch.hs.

3. Allow JXplorer to see the translated helpset. You can do either of the
following:

= Make a ZIP file of the translated helpset, then place it in the /plugins
directory.

= Add it to the JXplorer class path.
For information about the JavaHelp format, see

http://java.sun.com/products/javahelp/
(http://java.sun.com/products/javahelp/).

For information about internationalizing JavaHelp, see the JavaHelp User
Guide. Look in the Localizing Help Information section.

Translate the Welcome Page

You can internationalize the Welcome page that appears when JXplorer starts.

To do this, replace the /htmldocs/start.html file with language specific files of
the form 'start_[language code].html'.For example, for Japanese, this file
would be start_ja.html.

Make sure that these new files are written in UTF8, Unicode, or the default
local encoding.

Customizing JXplorer 63

http://java.sun.com/products/javahelp/

Internationalize JXplorer

Files Used in Translation

JXplorer is written using English strings. It then uses resource files to map the
English strings to the translated strings. These resource files are located in the
/language subdirectory.

Each resource file is made up of lines of words and phrases. Each line has a
word or phrase on the left, an equals sign, and the translation on the right. For
example, a map file for German might contain the following two lines:

Help = Hilfe
Welcome to JXplorer = Wilkommen du JXplorer

Any symbol on the left of the equals sign (including another equals sign) may
be escaped with a backslash, but for most strings this is not necessary.

Use the Template Map File

JXplorer comes with a template translation file named JX.translateMe.txt. This
file provides a list of strings on the left side, with the translations on the right
side remaining blank.

To use this template file
1. Fill in the translated strings on the right side of each line.

2. Save the file in UTF8 format if possible.
You can also use 16-bit Unicode, local character encoding, or Java Unicode
escape format.

3. Name the file according to the following format: JX[_country
abbreviation][_dialect].properties.
For example, a Japanese translation file should be named
/language/JX_ja.properties, where ja is the standard two letter internet
code for Japanese.
In another example, a French Canadian translation file should be named
/language/JX_fr_CA.

4. Place the file in the /language directory.

64 Administrator Guide

Internationalize JXplorer

Test Your Translation

File Formats

Fonts

To test your translation file

1. Back up the existing files in the /languages directory.
2. Add the translated strings to the translation files.

3. Run JXplorer

® |f you are on an English platform and you made changes to the right side
translations in the file JX.properties, you will see those changes the next
time JXplorer runs.

® |f you are in a non-English locale, copy the JX.properties file to a JX_[my
language].properties file, and start making changes there. These changes
will be visible the next time you run JXplorer.

For more information, see the Sun documentation on Java resource bundles
(http://java.sun.com/j2se/1.3/docs/api/java/util/ResourceBundle.html).

Many products have very restrictive rules about what file formats they will
accept non-English text in. JXplorer prefers files to use UTF-8 or 16 bit
unicode, but local character encodings (such as Japanese 'Shift-JIS' or Chinese
'Big-5") will usually work as well.

If your file might be used outside your locale, or if you need to include multiple
languages, you should use Unicode (either UTF-8 or 16 bit). This is because
locale-specific formats will only work on computers that are set to that locale.
That is, 'Shift-JIS' only works on computers that are set to the Japanese
region setting.

Unicode is used internally throughout JXplorer.

Occasionally you may see text of the form '...\u30AF\uU309A...". This is Java-
escaped Unicode format. You can use this format, but most word processors
will not save to this format, and it is not recommended.

While many fonts may exist on a system, Java does not automatically pick
them up.

If you need to install new fonts, use this Sun document for instructions:
http://java.sun.com/j2se/1.4.2/docs/guide/intl/fontprop.html
(http://java.sun.com/j2se/1.4.2/docs/quide/intl/fontprop.html).

Customizing JXplorer 65

http://java.sun.com/j2se/1.3/docs/api/java/util/ResourceBundle.html
http://java.sun.com/j2se/1.4.2/docs/guide/intl/fontprop.html

Supply Customized Files

Supply Customized Files

Depending on how much customization you've done, you may have new icon
files, HTML forms, HTML templates, and images.

If you are writing your own Java plug-in, and you need to use external data
files, you can access them using normal java zip handling methods. In addition
a utility class '/com/cai/od/cbutil/CBJarResource.class’ is available (see the API
documentation) and can be imported by your plug-in.

To supply the changed files in a ZIP file:

1. Put the changed files in a ZIP file.

2. Send the ZIP file to the end users.

3. Ask the users to place the ZIP file in the plugins directory.

JXplorer automatically scans the plug-ins directory for .zip and .jar files when
JXplorer is started. It reads the indexes of the zip files, and afterwards treats

any HTML templates, icons, and plug-ins in a ZIP file as being part of the
normal class path.

Automatic loading of tree icons and plug-ins is available in JXplorer 1.2.
Automatic loading of HTML templates from ZIP files is available in JXplorer 1.3.

Supply the Changed Files Directly

If you have customized only a small number of files, you can send your end
users the files directly, with instructions or a batch file to place them in the
correct directory.

Supply the Changed Files in a ZIP File

1. If you have a large number of files, you may need to make changes to the
/icons and /plugins directory, and create new subdirectories in the
/templates directory. To supply the changed files in a ZIP file:

2. Put the changed files in a ZIP file.

3. Send the ZIP file to the end users.

4. Ask the users to place the ZIP file in the plugins directory.

JXplorer automatically scans the plugins directory for .zip and .jar files when
JXplorer is started. It reads the indexes of the zip files, and afterwards treats

any HTML templates, icons, and plugins in a ZIP file as being part of the
normal class path.

66 Administrator Guide

Supply Customized Files

Structure of the ZIP File

If you use a ZIP file to supply the changed files to your users, the ZIP file must
have the same structure as the external directories.

That is, templates must be in the ZIP file under a /templates directory, icons
under a /icons directory, and so on. For example:

WinZip JX¥admin_jar
' Eile Action: QOptions Help
- : _._..-'\. = ot r = e - i
=9 Ew e D
Mew Open Favorites Add Extract Wiew CheckDut “wizard
MName 2 | M. Size | Ratio |_Packed | Path -]
@ dsadmindirectory. class J.oo1 1856 B0% 936 comicatodyjsplorerviewer
| ﬁdxadminDilectow.html M. 1 1446 43% 736 helphpluginhdefaulty |
E; dwadrmink 5 P.gif F. 1 118 B% 117 icansh
@ dsadmindsa.class Jooo 1 15068 B1% 732 comcaiodisplorertyiewer'
E; deadrninD 5. gif F. 1. 9E 1% 95 iconsh
ﬁ dsadminD 54 htrl M. 1 872 Avx 458 helptplugintdefaults
E; dwadmink Sad.ccessContral i F. 1 166 12% 146 iconsh
@ dsadmindsaaccesscontiols.class Joo 1 14873 49% 343 comhcaivodijxploreryiewer'
’ﬁ dxadminD S&AccessControls. gif P. 1 166 12% 146 iconsh | i
4 »
| |Selected Dfiles, O bytes Total 233 files, 4,358K8 W

Customizing JXplorer 67

Chapter 10: How JXplorer Reads the
Schema

After the connection details are obtained, the browser attempts to contact the
directory.

After a connection to the directory has been made (through LDAP v3 or

DSML), JXplorer obtains the directory's current schema. Directories that
support LDAP v3 (such as eTrust Directory) download the schema to the
browser.

This lets the browser correctly create, display, and edit entries without
requiring any independent browser configuration. Since the browser gets the
schema from the directory, it is always up-to-date, and there is no possibility
of inconsistency.

If you connect to the directory using DSML instead of LDAP, JXplorer can still
get the schema, as long as the DSML server can use LDAP v3 to communicate
with the DSA.

This section contains the following topics:

Data in Each Schema Object (see page 70)
Checking Entries for Schema Conformance (see page 71)

How JXplorer Reads the Schema 69

Data in Each Schema Object

Data in Each Schema Object

A schema contains the following schema objects:
Attribute Types

Attribute types define the attribute's syntax and how the attribute is
compared and sorted.

LDAP Syntaxes

LDAP syntaxes describe the representation of the attribute's value.
Object Classes

Object classes define what kind of attributes an entry can contain.
DIT Structure Rules

DIT structure rules define where entries appear in the directory
information tree. DIT structure rules are part of the name bindings.

Name Forms
Name forms specify which attributes the entry can be named by. Name

forms are part of the name bindings.

This table lists the data contained in each of these schema objects:

Attribute LDAP Object DIT Structure Name
Types Syntaxes Classes Rules Forms
oID Yes Yes Yes Yes Yes
NAME Yes Yes Yes Yes
DESC Yes Yes Yes
SUP Yes Yes Yes
SYNTAX Yes
SYNTAX Description Yes
EQUALITY Yes
SINGLE-VALUED Yes
ocC Yes
MUST Yes Yes
MAY Yes Yes
FORM Yes

70 Administrator Guide

Checking Entries for Schema Conformance

Checking Entries for Schema Conformance

eTrust Directory automatically checks all entries submitted to the directory to
ensure that they conform to the directory schema.

JXplorer also checks that each entry conforms to the schema. For example, if
you try to submit an entry that has a mandatory attribute with no value,
JXplorer rejects the change you have made:

attribute type value
cn |Craig LINK
ohjectClass inetCrgFerson

Error Encountered

e

11l Mandatory Attributes must hawve wvalues!

dep

-‘l:l.-SL-II[_II.IUII

If you do not want JXplorer to check that each entry conforms to the schema,
select the Ignore Schema Checking option in the Options menu:

MH Tools Security Help

[« Confirm Tree Operations

Resolve Aliases while Erowsihg

Advanced Options

inrtClaes

How JXplorer Reads the Schema 71

Chapter 11: How JXplorer Handles
Passwords

This section discusses how JXplorer handles passwords.

This section contains the following topics:

Password Storage (see page 73)
Password Hashing (see page 74)

Password Storage

When you use the Connection dialog to connect to a DSA using a password,
JXplorer saves the password.

These saved passwords are not stored in connections.txt. Instead, JXplorer
stores these passwords internally.

When JXplorer is shut down, any stored passwords are discarded.

For instructions, see Turn Off Password Storage.

How JXplorer Handles Passwords 73

Password Hashing

Password Hashing

When you create or edit a user password using JXplorer, this password has to
be sent from JXplorer to the underlying directory.

To make sure that the password is kept secure:

® Do not send unencrypted passwords over unsecure connections

® Do not store passwords in clear text (unencrypted).

JXplorer with eTrust Directory

If you use JXplorer with eTrust Directory, the following happens when you
create a new user password:

1. JXplorer binds to an eTrust Directory DSA. You should use SSL or another
secure connection for this binding.

2. In JXplorer, you create a user password, using plain encryption, MD5 or
SHA.

3. JXplorer sends the password to the DSA, using the SSL connection.

4. The eTrust Directory DSA hashes the password, then stores it.

This means that if you use eTrust Directory and bind to it using SSL, JXplorer
does not need to hash the password. The password is kept secure during
transmission because the connection to the DSA uses SSL, and the password
is stored securely because eTrust Directory hashes it.

However, if you do choose to hash the password, an eTrust Directory DSA will
recognize the hash format, and can compare hashes to check that the
password is correct. Make sure you use the same hash algorithm for the
password in both JXplorer and the DSA.

74 Administrator Guide

Password Hashing

JXplorer with Other LDAP Directories

Not all directories are capable of hashing passwords before they are stored.
This means that if you use JXplorer with another LDAP directory, you may
need to set JXplorer to hash the password before it is sent to the directory.

If you use JXplorer with a directory that doesn't hash passwords, the following
should happen when you create a new user password:

1. JXplorer binds to the directory. You should use SSL or another secure
connection for this binding.

2. In JXplorer, you create a user password.
3. JXplorer hashes the password using MD5 or SHA.

4. JXplorer sends the hashed password to the directory, using the SSL
connection.

5. The directory stores the password exactly as it was received.

To set JXplorer to hash a user password, use the drop-down list in the User
Password Data dialog. For more information, see Adding a User Password.

How JXplorer Handles Passwords 75

Chapter 12: How JXplorer Handles SSL,
SASL, and Certificates

SSL and SASL

You can use Secure Sockets Layer (SSL) authentication to communicate
securely with a directory server. Two variants are allowed:

m SSL with server authentication only (simple SSL)

m SSL with both client and server authentication (authenticated SSL)

This section contains the following topics:

SSL and SASL (see page 77)
Manage Certificates and Keystores (see page 79)

Simple SSL authenticates the server only, whereas authenticated SSL
authenticates both the client and the server.

Both variants require the client to be initialized with the trusted public
certificate of the directory server, or the public certificate of the directory
server's certificate authority. The trusted public certificates of servers are
stored in the cacerts keystore file, located in the security directory, under
JXplorer.

In addition to the above, Authenticated SSL requires the registration of the
client's trusted public certificate (or the public certificate of the client's
certificate authority) with the directory server, and use of the client's private
key. Trusted public certificates and private keys of clients are stored in the
clientcerts keystore file, located in the security directory, under JXplorer.

When you add or delete a certificate, or private key, the keystore files are
updated and encrypted. You can set a password to stop unauthorized changes
to these files.

How JXplorer Handles SSL, SASL, and Certificates 77

SSL and SASL

Server-Authenticated SSL

For server-authenticated SSL to work, you must initialize the client with the
trusted public certificate of the directory server, or the server's certificate
authority.

The default keystore for trusted certificates is the security/cacerts file, which
comes initialized with the certificate authority certificate used to create the
demonstration DXserver certificates. While you can change this, the default
setup lets the demonstration directories be contacted immediately using SSL.

You can connect to the directory using server authenticated SSL, as either an
anonymous user, or with your user name and password.

Client-Authenticated SSL and SASL

Client-authenticated SSL requires the registration of the server's certificate
with the browser, and in addition, the registration of the browser's certificate
(or certificate authority) with the server.

Client-authenticated SSL also requires the use of the browser's private key,
which is held in the ...//security/clientcerts file. This file is password-protected,
and requires the password to be entered in the connection dialog for client-
authenticated SSL to work.

A demonstration client certificate marjorie.pem is provided in the security
directory.

eTrust Directory can use SASL authentication to authenticate a user, rather
than a user name and password. This implementation of SASL uses the
certificates previously exchanged by SSL, and will only work when client-
authenticated SSL is used. This differs from server-authenticated SSL where
no client certificate is produced, so the directory is not able to use it to
establish identity.

The secure use of client-authenticated SSL requires creating a new private key
for the browser rather than using the default private key. This requires using a
public key infrastructure tool, such as eTrust® PKI or Open SSL, to produce a
PKCSS8 private key.

78 Administrator Guide

Manage Certificates and Keystores

Manage Certificates and Keystores

To use SSL in either form, you must manage a variety of certificates and
private keys. These are kept in two Java keystores, which are password
protected data stores. The first keystore, ...//security/cacerts, with the
password changeit, is used for storing the public certificates of trusted
certificate authorities and servers. The second keystore,
...//security/clientcerts, is used for storing the certificates and private keys of
the JXplorer browser, and it has the password passphrase. Manage these
keystores from the Security menu in JXplorer, where you can change the
default keystore passwords.

JXplorer uses the standard Java cryptography tools for its SSL support. These
two files are standard Java keystores, which you can maintain using the Java
keytool utility. This is a command line utility produced by Sun Microsystems.
For more information, see keytool - Key and Certificate Management Tool
(http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/keytool.html).

How Certificates Are Stored

By default, the trusted public certificates of servers and certificate authorities
are stored in the cacerts keystore file, and the trusted public certificates and
private keys of clients are stored in the clientcerts keystore file, which are
located in the JXplorer security directory.

However, you can change the location and type of the keystore file. See the
online help for instructions.

How to Decide Where to Store Certificates

If you want to use Secure Sockets Layer (SSL) authentication to communicate

securely with a directory server, you must add the trusted public certificate of

the directory server, or the public certificate of the directory server's certificate
authority, to the cacerts keystore file.

If you want to strengthen the security and validate the client as well, you must
add the client's trusted public certificate (or the public certificate of the client's
certificate authority), and the corresponding private key, to the clientcerts
keystore file.

How JXplorer Handles SSL, SASL, and Certificates 79

http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/keytool.html

Manage Certificates and Keystores

How to Work with Private Keys

The password protecting the client's private key must be the same as that
used to protect the clientcerts keystore file; therefore, you cannot change the
keystore password after entering the private key password. If you want to
change the keystore password, you must export the private key first, change
the keystore password, and then re-import the private key into the keystore.

Private keys can only be imported as a special type of password-protected file
called pkcs8. The password of the private key must be the same as that
protecting the keystore.

How to Work with Public Keys

The cacerts keystore file has a default password of changeit; the clientcerts
keystore file has a default password of passphrase. For instructions for setting
a new password to stop unauthorized access to these files, see the online help

80 Administrator Guide

Chapter 13: Extending JXplorer

JXplorer can be extended to load small Java programs, similar to Web applets,
based on an entry's object class.

This section contains the following topics:

Pluggable Attribute Editors (see page 81)
Pluggable Entry Editors (see page 91)
Plug-ins with Data Listeners (see page 94)
Plug-ins with Threads (see page 97)
Localize JXplorer Plug-ins (see page 101)
Add Help Files to Plug-ins (see page 102)

Pluggable Attribute Editors

LDAP is primarily a string handling protocol and many attribute values are
simple text strings. However, it is often necessary to load other types of data,
for example, certificates and images.

eTrust Directory can be used to store many types of non-string data types,
including graphics formats, audio formats, cryptography formats, and
application-specific data types.

JXplorer allows you to load binary files to some attributes, such as
userPKCS12.

The general-purpose JXplorer cannot be used to modify binary data, but you
can create your own binary editor for a particular data type.

The browser also supports custom binary editors (written in Java using a
provided minimal API) that dynamically loads at run time. You key such binary
editor extensions to a particular object class. This would let you write, for
example, an editor for a custom certificate object class.

These editors will only work for binary value data attributes and no other data
types.

Standard editors are provided for X.509 certificates, and a nhumber of standard
image and audio formats.

Extending JXplorer 81

Pluggable Attribute Editors

Ways to Edit Binary Attributes

To create a pluggable attribute editor takes time, and you may not need to do
it. JXplorer comes with two binary editors, or you can use a Windows editor.

Using a Windows Editor

You can choose to use a Windows editor instead of creating a pluggable
attribute editor. To do this, save the file, then edit it, then load it again.

However, if you do this, your application may not be able to run on a non-
Windows platform. A possible path out of this is to check the operating system
in the pluggable attribute editor, and issue an appropriate native command
depending on the OS.

Using the File Launching Feature

To modify binary data, you can use the default binary editor to save the data
to disk, use your normal tool to manipulate the data, and load it back into the
default binary editor.

The binary editor is very limited. JXplorer lets you edit the attributes in the
odMultimedia schema, which lets you save and launch files of the following
formats:

Format Attribute Type
.avi odMovieAVI

.doc odDocumentDOC
.mid odMusicMID

.wav odSoundWAV

Xxla odSpreadSheetXLS

82 Administrator Guide

Pluggable Attribute Editors

To use the attribute types in odMultimedia in the Table Editor, add the
odMultimedia object class to an entry.

You can then add binary files to that entry, and launch those files from the
Table Editor view of the entry.

= JXplorer : §| rg|

File Edit View Bookmark Search LDIF Options Tools Security Help
FS8EG thaaE X D= 4 0

|i b I: "l Guick Search
o Explore | @ Results| @ Schema HTML view| E3 Table Editor
B Wyiarld A || attribute type value
= Ay ch Craig LINK A
= ,&, DEMOCORP ohjectClass inetOrgPersan
= ,é, Corporate j rganizationalPerson
= & Administr

ation

ass person

LIMK] ohije

g Dominic MAJOR ohjectClass top W
Gavin LOWE sn LINK
Jodie LAY description Product Distribution
Juliet LEVY rmail Craig. LINK@DEMOCORP.com
Kevin LUCAS postalAddress 83 Venton RoadfHohart TAS
dal BAIL postalCode 7ona
Melindie LYNCH — || | telephoneMNumber 544 3697
Madia KITE title Group Secretary
Wivienne LEVER audio

Finance husinessCategory
Information carLicense
Investments departmentNumber a2

HEEEE®HB

| submit || Reset || changeciass || Properties |

Connected To ldap:fiCOMPO1:15259" I

For more information, see Launch Binary Files in the JXplorer online help.

Foreign Languages Do Not Require a Pluggable Editor

You don't need to write a pluggable editor to use different languages with
JXplorer.

JXplorer has been successfully tested with European and Asian languages on
correctly installed localized platforms.

Java's normal string handling of Unicode automatically translates between the
locale-specific character encoding and the Unicode format used internally in
the browser. The Unicode is read from and written to the directory in a
transformation format called UTF-8, but this is invisible to the user.

For information about internationalizing JXplorer, see Internationalize JXplorer
(see page 62).

Extending JXplorer 83

Pluggable Attribute Editors

Writing a Pluggable Attribute Editor

Writing a pluggable editor simply involves writing a Java class that does one of
the following:

B Implements the com.ca.directory.jxplorer.editor.abstractbinaryeditor
interface

® Extends the com.ca.directory.jxplorer.editor.basicbinaryeditor class

The class must be given the name of the attribute type, in lower case, with the
suffix editor.

For example, if you create an editor for the attribute ocspRSAPrivateKey, you
must name the final class ocsprsaprivatekeyeditor.

Extending the abstractbinaryeditor class

The abstractbinaryeditor interface has only one method: public void
setValue(editablebinary editMe). This passes an editablebinary object, which is
a data object used to store a byte array. The editablebinary object has two
methods, public byte getValue() and public void setValue(bytebytes), used
respectively to read and write to the object.

When an attribute value of the appropriate type is found by JXplorer, and a
user wishes to edit it (by clicking on the value cell in the editor pane) JXplorer
will run the pluggable editor, passing the byte array to it using the setValue
method of abstractbinaryeditor. That Editor can then manipulate the object as
it wishes (usually by creating a GUI and allowing the user to edit the data in
some way). As long as the editablebinary object is updated with the final
value, when the user click the Submit button in JXplorer, the new value is
entered into the directory.

Extending DefaultBinaryEditor

The class defaultbinaryeditor is a default implementation of
abstractbinaryeditor using a swing JFileChooser. For some purposes it may be
easier to extend it, rather than implement a GUI from scratch and using
abstractbinaryeditor directly.

84 Administrator Guide

Pluggable Attribute Editors

Example: Handling Masked Binary Password Data

The following is an example of a pluggable editor that could be used to handle
masked, binary password data. Almost all of this code is simply setting up the
GUL.

/**

* All pluggable editors must be in this package
*/

package com.ca.directory.jxplorer.editor;

import com.ca.commons.cbutil.*; // custom version of JPanel
import com.ca.directory.jxplorer.AdvancedOptions;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

/**

Password Editor.

Allows user to enter a masked binary password. The dialog contains two
password fields. The first is for displaying the password that is stored in
the directory. The second is to confirm that the first has been entered
correctly. To change the password the user needs to click on the change
button. Both password fields are then cleared (we don't want the user to edit
the encoded password). When the user clicks the save button a check is done.
If the user hasn't changed the password, it gets stored. Otherwise if the user
did change it, the two password fields must match before it is saved (a
warning message is displayed if they don't match).

¥ X X X X X X X X X X

*/
public class userpasswordeditor extends JDialog
implements abstractbinaryeditor

protected JPasswordField oldPwd, newPwd;
protected CBButton btnOK, btnCancel, btnHelp;
protected EditableBinary editMe = null;
protected CBPanel display;

protected JLabel oldLabel, newLabel;
protected boolean firstClick = true;

/**
* Constructor - sets up the gui.
*/

public userpasswordeditor(Frame owner)

{

Extending JXplorer 85

Pluggable Attribute Editors

super(owner);

setModal(true);
setTitle(CBIntText.get("User Password"));

display = new CBPanel();

oldPwd = new JPasswordField();
oldPwd.addMouselListener (new MouselListener()
{
public void mouseClicked(MouseEvent e
public void mouseEntered(MouseEvent e
public void mouseExited(MouseEvent e) { }
public void mouseReleased(MouseEvent e) { }
public void mousePressed(MouseEvent e)

{

) {1}
) {1}

if (firstClick)

{
oldPwd.setText("");
firstClick = false;

1

newPwd = new JPasswordField();

oldLabel
newLabel

new JLabel(CBIntText.get("Enter Password:"));
new JLabel(CBIntText.get("Re-enter Password:"));

btnOK = new CBButton(CBIntText.get("OK"), CBIntText.get("Click here to
save the changes (remember to click Submit in the table editor)."));
btnOK.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)
{
load();
}
s

btnCancel = new CBButton(CBIntText.get("Cancel"), CBIntText.get("Click
here to exit."));
btnCancel.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)
{
quit();
}
s

86 Administrator Guide

Pluggable Attribute Editors

btnHelp = new CBButton(CBIntText.get("Help"), CBIntText.get("Click here
for Help."));
CBHelpSystem.useDefaultHelp(btnHelp, "edit.password");

display.makeHeavy();
display.addln(oldLabel);
display.addln(oldPwd);
display.addln(new JLabel(" "));
display.addln(newLabel);
display.addln(newPwd);
display.makeLight();

JPanel buttonPanel = new JPanel();

buttonPanel.add(btnOK) ;

buttonPanel.add(btnCancel);

buttonPanel.add(btnHelp);

display.addln(buttonPanel);
display.getInputMap(JComponent.WHEN IN FOCUSED WINDOW).put(KeyStroke.getKeyStroke
("ENTER"), "enter")

display.getInputMap(JComponent.WHEN IN FOCUSED WINDOW).put(KeyStroke.getKeyStroke
("ESCAPE"), "escape");
display.getActionMap().put("enter", new MyAction(CBAction.ENTER));
display.getActionMap().put("escape", new MyAction(CBAction.ESCAPE));

setSize (300, 170);

CBUtility.center(this, owner); //Centres the window.
setTitle(CBIntText.get("User Password Data"));
getContentPane().add(display);

}
/**
* Apparently it is better to use key bindings rather than adding a
* KeyListener... "for reacting in a special way to particular keys, you
* usually should use key bindings instead of a key listener".
* This class lets the user set the key as an int. If a key is pressed and
* it matches the assigned int, a check is done for if it is an escape or
* enter key.
* (27 or 10). If escape, the quit method is called. If enter, the apply
* method is called.
* Bug 4646.
*/
private class MyAction extends CBAction
{
/**

* Calls super constructor.
* @param key

*/
public MyAction(int key)

Extending JXplorer 87

Pluggable Attribute Editors

super(key);

/**
* quit is called if the Esc key pressed,
* load is called if Enter key is pressed.
* @param e never used.

*/
public void actionPerformed(ActionEvent e)
{
if (getKey() == ESCAPE)
quit();
else if (getKey() == ENTER)
load();
}
}
/**

* This is the abstractbinaryeditor interface method which is
* called when the user wants to edit the password
*/
public void setValue(editablebinary editMe)
{
this.editMe = editMe;
oldPwd.setText (stringEncode(editMe.getValue()));

}
/**
* converts between text and a byte array
*/
protected byte[] stringDecode(String s)
{
if (s == null)
return (new byte[0]);
else
try
{
return s.getBytes("UTF-8");
}
catch (UnsupportedEncodingException e)
{
CBUtility.log("Unexpected error encoding password " + e);
e.printStackTrace();
return new byte[0];
}
}
/**

88 Administrator Guide

Pluggable Attribute Editors

* converts between a byte array and text

*/
protected String stringEncode(byte[] b)
{
if (b == null || b.length == 0)
return new String();
else
try
{
return new String(b, "UTF-8");
}
catch (UnsupportedEncodingException e)
{
CBUtility.log("Unexpected error decoding password " + e);
e.printStackTrace();
return new String(b);
}
}
/**

* sets the value of the editablebinary object with whatever the
* user has entered into the password text field.
*/
protected void load()
{
if (passwordConfirm())
{
editMe.setValue(stringDecode(new String(newPwd.getPassword())));
quit();

/**
* Does some checks on the password.
* @return True - if the two password fields match.
* False - if the new password field is empty (an error message is
* displayed).
* False - if the password fields don't match (an error message is
* displayed).
*/
protected boolean passwordConfirm()
{
if (new String(newPwd.getPassword()).equals(new
String(oldPwd.getPassword()))) //if the two password fields match carry on
saving the password.

{
return true;
)
else if (new String(newPwd.getPassword()).equals("")) //if the new

Extending JXplorer 89

Pluggable Attribute Editors

password field is empty display error message.
{

JOptionPane.showMessageDialog(display, CBIntText.get("Empty password
field, please fill in both fields"), CBIntText.get("Warning message"),
JOptionPane.INFORMATION MESSAGE);

newPwd.setText("");

return false;

}
else //if the password fields don't match display error message.
{

JOptionPane.showMessageDialog(display, CBIntText.get("Password typed
incorrectly, please try again"), CBIntText.get("Warning message"),
JOptionPane.INFORMATION MESSAGE);

newPwd.setText("");

return false;

/**

* Shuts down the gui.
*/

protected void quit()

{
setVisible(false);
dispose();

90 Administrator Guide

Pluggable Entry Editors

Pluggable Entry Editors

Pluggable entry editors are similar to pluggable attribute editors, except that
they are triggered on an entire entry, rather than just an attribute of an entry.
They take up the entire right-hand editing pane, and can suppress the normal
HTML and table display if desired, giving a ‘custom application’ look.

There may be no need to write a pluggable editor. If all you need to do is give
a custom look-and-feel to your data, you may find it easier to use the HTML
templates and forms. But, if you need to do any complex client-side
processing such as wizards or form validation, it may be useful to write your
own editors.

Editor Names and Locations

The name of the editor must be the same as the object class of the type of
entry it is to be used for. So if the editor is to be used for ‘people’, the name of
the class is simply 'people.class’.

Entry editors must be completely in lower case, and there is no suffix.

The classes made need to be packaged into the JavaBrowser.jar file in the
directory C:\Program Files\CA\eTrust Directory\jxplorer\jars and they need to
be added into the JavaBrowser.jar file with the correct path:
com\ca\directory\jxplorer\viewer.

For example, if the person.class file is created it needs to be packaged and
have the path name: com\ca\directory\jxplorer\viewer\person.class

The PluggableEditor Interface

The Pluggable Editor interface defines a number of methods that let the
Pluggable Editor take control of the entirety of JXplorer. Most of the time you
will only want to use a handful of these. For more information, see the
JXplorer APl Reference (../jxplorer/api/index.html) that was installed with
JXplorer.

The DataSink Interface

The DataSink interface is used internally in JXplorer for transferring data to
data consumers. Since the Pluggable Editor class does this, a pluggable editor
must also implement the DataSink interface (which has only two methods).

Extending JXplorer 91

Pluggable Entry Editors

Extending BasicPluggableEditor

Most editor writers will probably simply extend BasicPluggableEditor, which
has default implementations of all the required methods. The class
BasicPluggableEditor simply displays the entry passed to it as text in a JPanel.
The following shows a trivial extension of BasicPluggableEditor (which in fact
does exactly the same thing - simply displays the entry in a text pane).

package com.ca.directory.jxplorer.viewer;

import java.awt.*;

import java.awt.event.*;

import java.awt.geom.*;

import javax.swing.*;

import com.ca.directory.jxplorer.viewer.BasicPluggableEditor;
import com.ca.commons.naming.DXEntry;

import com.ca.directory.jxplorer.DataSource;

public class person extends BasicPluggableEditor

{
JEditorPane basicDisplay;
JScrollPane scrollPane;

/**

* The Constructor sets up the JEditorPane GUI
*/

public person()

{
basicDisplay = new JEditorPane("text/plain","");
scrollPane = new JScrollPane(basicDisplay);

/**

* This method is called by JXplorer when a new 'person' entry
* needs to be displayed.

*/

public void displayEntry(DXEntry entry, DataSource ds)

{
basicDisplay.setText(entry.toString());

/**

* This method returns a GUI component to JXplorer to display
* in the right hand pane.

*/

public JComponent getDisplayComponent()

{

return scrollPane;

92 Administrator Guide

Pluggable Entry Editors

Sending Changes

This results in the following editor pane:

entry = ou=Administration,ou=Cuorporate, o=DEMOCORP c=AL
status: Mormal
Size (23)
dx att: businessCategory (size=0)
o att: description {size=0)
o att: destinationindicator (size=0)
o att: facsimileTelephonetlumber {size=0)
o att: internationaliSDMMNumber (size=0)
¥ att: | (size=0)
v ath objectClass (size=1)
1:organizationalUnit
must dx att ou (size=1)
1:Administration
o att: physicalDeliveryOfficeMName (size=0)
o att: postalAddress (size=0)
oy att: postalCode (size=0)

oy att: postOfficeBox (size=0) _ILI
| | *

This is all that is required for your own pluggable editor - a GUI and some
code to handle the 'displayEntry(..)' method. Check the API for the methods of
the DXEntry object - it is an extension of the standard JNDI 'Attributes' object
and supports all its methods, as well as a large number of utility extension
methods (such as the entry.toString() method).

|»

to the Directory

When your user has registered changes in your custom pluggable editor GUI,
you'll need to submit them to the directory. The core pluggable editor method
is public void displayEntry(DXEntry entry, DataSource ds). The entry
parameter is the data to display, while the DataSource parameter is a link to a
data source (usually a directory) that you can use to submit changes. The
simplest call in DataSource is modifyEntry(..), which takes the original entry
and the new entry, and makes the necessary calls to the directory to
efficiently convert the old entry to its new state.

There are a large number of other data related operations you might want to
make with the directory, ranging from reading more data, searching,
modifying the directory tree structure, and reading schema details.

DataSource is actually the front end to a queued, multi-threaded directory
connection. As a pluggable Editor writer you shouldn't normally need to worry
about that; it just means that your GUI won't freeze up when you make a
directory request! However if you need to know the result of a directory
operation you'll need to know about the data event model. When a directory
operation is completed (successfully or otherwise) your editor can find out by
registering itself as a 'DataListener’ (this metaphor will be familiar to Java
programmers who have worked with GUI listeners). The details of doing this
are covered in the Plug-ins with Data Listeners (see page 94) section.

Extending JXplorer 93

Plug-ins with Data Listeners

Plug-ins with Data Listeners

Directory operations occur over networks, which can be slow, and may require
processing on a busy directory server, which may also be slow. If your
application is waiting on the results of a directory operation, it can 'freeze up'.
The GUI doesn't respond to mouse clicks, or may not repaint properly. The
user will assume the program has crashed, and may kill it manually. The worst
that can occur is when the directory server crashes or your network dies, and
the browser freezes until the connection times out.

The JXplorer Threading Model

Fortunately it is relatively easy to make a Java application multi-threaded, so,
as an editor writer, it would not be much work to put your directory code in a
different thread. However this isn't necessary using JXplorer's pluggable
editors, since JX is already multi-threaded. In fact, pluggable editors written
using the techniques of the last chapter are already multi-threaded, and will
not hang.

Problems arise when you need to write code that is conditional on the results
of a directory operation. For example, you may want to create a particular
entry if it doesn't exist, or modify it if it does. The way to do this in a
pluggable entry editor is to either use the 'Datalistener’ interface (for simple
operations), or to pass an extended 'DataQuery’ object (for more complex
tasks).

This section shows you how to use the simpler DataListener interface, and the
Plug-ins with Threads (see page 97) section how to use the general purpose
‘DataQuery’ method to run arbitrary code.

94 Administrator Guide

Plug-ins with Data Listeners

Using the Datalistener Interface

The displayEntry() method of DataSink contains the entry to display, and a
‘DataSource’. The DataSource can be used to carry out various directory
operations, such as getEntry() or copyTree(). However, since these operations
occur in another thread, rather than returning data or a success code
immediately, they return a 'DataQuery’ object.

The DataQuery object is used to communicate with the connection thread. If
you need to know what happens to the operation (and you may not - for
example the results of a '‘copyTree()' operation, or any errors, will be displayed
by the browser without any intervention) you can use the DataQuery object.
This is done by registering a 'DataListener’ with the DataQuery object, in the
same way as an 'ActionListener' might be registered with a button. When the
DataQuery has completed (either successfully, or with an error) your
DataListener will be called with the result.

The Datalistener only has one method returning one object - the original
DataQuery! However in this method you are guaranteed that the DataQuery
has finished, and is ready for reading. So within the DatalListener method you
can use all the DataQuery methods such as hasException() or getResult().

This may seem a bit of effort to go to, but is in fact fairly straightforward.

Important! Attempting to read the DataQuery object immediately can be very
dangerous - in the best possible case it will block the current thread until the
data is ready, in the worst case it will attempt to block the thread making the
directory connection and will throw an exception in order to avoid thread
‘deadlock’.

The following code snippet (using an anonymous inner class) is a quick
example of how to use a Datalistener:

public class MyPluggableEditor extends BasicPluggableEditor
{

public void displayEntry(DXEntry entry, DataSource myDataSource)
{

DataQuery readQuery = myDataSource.getEntry(
new DN("cn=fred, ou=R&D,0=CA"));

readQuery.addDatalListener(new DatalListener()

{
public void dataReady(DataQuery query)

{

Extending JXplorer 95

Plug-ins with Data Listeners

if (query.hasException())

{

System.err.println("couldn't read entry " +
query.getDN()+"\nexception= "+query.getException());

B // prevent the browser also displaying the error.
query.squelch();

}

else

{
System.out.println("read entry " + query.getEntry());
}

Other Datalisteners

Your pluggable editor isn't the only Data Listener. The JXplorer browser tree is
another, and it will respond to any data operations that occur, showing error
messages or changing the tree as appropriate.

Most of the time this is what you want. However, if you'd prefer to keep your
operations private (maybe you're handling your own exceptions, or you're
hiding a sub-level of the directory from the user) you can ‘'squelch()’ the
query, preventing any other listeners from processing the query.

Complex Directory Interactions

Sometimes this still isn't enough - you need to make a directory request in
your pluggable editor, and then, depending on the result, you need to make
further requests.

There are a number of ways of doing this. One method is to use the
getBroker() DataQuery method. This gives you raw access to the directory
connection methods.

This method falls down if the initial directory action is non-standard, and may
also be a little clumsy if you have a single unit of work to do, that could be
nicely executed in one place. In this case, the best thing to do may be to
extend the DataQuery class itself, and pass an 'extended DataQuery' to the
DataSource, using DataSource's 'extendedRequest()’ method. How to do this
is covered in the Plug-ins with Threads (see page 97) section.

96 Administrator Guide

Plug-ins with Threads

Plug-ins with Threads

If you have a complex piece of directory logic to execute, the preceding
methods may be a bit clumsy. For example, consider the following action:
"check if this entry exists, if it doesn't exist, create the following sub-tree,
otherwise, check that all these components exist, and if they don't exist,
create them, and finally copy the whole tree into a backup branch directory".

This could be done using the previous technique by doing the first query (an
existence check) and then putting the rest of the code in the Datalistener,
while using the DataQueries ‘getBroker()' method.

Bundling Complex Directory Code

Instead, you can bundle all the code up in one place, and use an ‘extended
data query'. The method is simply to extend the DataQuery class by
implementing the 'doExtendedRequest()’ method, and then pass the resulting
query to the connection thread using the broker's 'extendedQuery()" method.

Extending JXplorer 97

Plug-ins with Threads

Example: Reading an Entry and Printing It Out

The code in the Plug-ins with Data Listeners (see page 94) section, which read
an entry and printed it out, could be rewritten as:

public class MyPluggableEditor extends BasicPluggableEditor
{

public void displayEntry(DXEntry entry, DataSource myDataSource)
{

myDataSource.extendedRequest (new DataQuery
{
public void doExtendedRequest(Broker myBroker)
{
DXEntry myEntry = myBroker.unthreadedReadEntry (
new DN("cn=fred,ou=R&D,0=CA"));
if (myBroker.getException() != null)
{
System.err.println("couldn't read entry " + query.getDN() +
"\nexception was: " + query.getException());
}
else
{
System.out.println("read entry " + query.getEntry());

Note: There is no need to 'squelch()' anything, because no listeners (except
any that you might register) pay attention to extended queries.

98 Administrator Guide

Plug-ins with Threads

Unthreaded Broker Methods

Since the DataQuery is being run in the connection thread, it should use the
‘'unthreaded' broker methods to access the directory.
These methods are:

® unthreadedExists

B unthreadedReadEntry

® unthreadedCopy

® unthreadelList

= unthreadedModify

® unthreadedSearch

® unthreadedGetAllOCs

® unthreadedGetRecOCs

For more information, see the JXplorer APl Reference
(../jxplorer/api/index.html) that was installed with JXplorer.

Important! Do not use of the threaded methods such as doEntryQuery()
instead of unthreadedRead(). The threaded methods place a query on the
connection thread queue. Since the extended request is being run by this
same connection thread, if eTrust Directory tries to read the result of one of
these threaded operations, the connection thread will immediately deadlock.

Example: Check for Existence, Create, and Copy to Backup Branch

As a more elaborate example, let's try the scenario outlined previously:

1. Check the existence of an entry.

2. If it doesn't exist, create it and a subtree.

3. If it does exist, check that the subtree exists and create it if it doesn't.
4

Copy everything to a backup branch.

public class MyPluggableEditor extends BasicPluggableEditor
{

public void displayEntry(DXEntry entry, DataSource myDataSource)
{

* Define a new 'ExtendedDataQuery' class.
* (XXX error checking not implemented)

Extending JXplorer 99

Plug-ins with Threads

*/

class ExtendedDataQuery extends DataQuery
{
Broker currentBroker = null;
public void doExtendedRequest(Broker myBroker)
{
currentBroker = myBroker;
boolean exists = currentBroker.unthreadedExists(new DN("cn=top,0=CA"));
if (exists == false)
{
writeTop();
writeTree();
}
else
{
if (checkTree() == false)
writeTree()
}
currentBroker.unthreadedCopy(new DN("cn=top,o=CA"),
new DN("cn=top, cn=backup,o=CA"));
}
void writeTop()
{
DXEntry top = new DXEntry("cn=top,o=CA");
top.put("objectClass", "TopEntry");
currentBroker.unthreadedModify (null, top);
}
void writeTree()
{
DXEntry[] nodes = new DXEntry[5];
DXEntry[0] = new DXEntry("cn=node A,cn=top,o0=CA")
DXEntry[1] = new DXEntry("cn=node B, cn=top,0=CA");
DXEntry[2] = new DXEntry("cn=node C,cn=top,0=CA");
DXEntry[3] = new DXEntry("cn=node D, cn=top,o0=CA")
DXEntry[4] = new DXEntry("cn=node E,cn=top,o=CA")
for (int i=0; i<5; i++)

’

’

’

{
DXEntry[i].put("objectClass", "TreeEntry");
currentBroker.unthreadedModify(null, DXEntry[i]);
}
}
boolean checkTree()
{

DXNamingEnumeration list =
currentBroker.unthreadedList ("cn=top,0=CA");
return (list != null && list.size() == 5);
}
}

100 Administrator Guide

Localize JXplorer Plug-ins

// Create and run our extended query.
myDataSource.extendedRequest (new ExtendedDataQuery())

Localize JXplorer Plug-ins

Plug-ins may also require their own translation files and help files. JX makes it
easy to add plug-in-specific files to JX at run-time.

This is easily done using a single method call. If your plug-in is extending from
BasicPluggableEditor, the call is:

addLanguageBundle("myBundleName") ;

If you are implementing the PluggableEditor interface, you can make the
equivalent call using the code:

CBIntText.addBundle("myBundleName", getClass().getClassLoader());

In both these instances, replace the string "myBundleName" with the name of
your particular plug-in's resource bundle.

If your plug-in needed to translate the word 'help' into German for display in
the German locale, you would create a file called myPlugin_de.properties, and
have in it the single line:

help = hilfe

Place the 'myPlugin_de.properties’ file in your plugin zip file (at the top level),
and make the call 'addLanguageBundle("myPlugin™);" in the constructor of
your plug-in, and a later call to '‘CBIntText.get("help™)’ should return the string
"hilfe". You could use this in a label definition: JLabel myLabel = new
JLabel(CBIntText.get("help™));

Extending JXplorer 101

Add Help Files to Plug-ins

Add Help Files to Plug-ins

Plug-ins can also add their help files to the main JXplorer help. This requires
the creation of a plug-in help set (similar to the JXplorer help). When your
help set is created (including foreign language version if required), the
resulting help files should be added to the plug-in zip file (or equivalently,
copied unzipped to the plug-ins directory.

If your plug-in is extending from BasicPluggableEditor, the call is:
addHelpSet ("myHelpSet") ;

If you are implementing the PluggableEditor interface, you can make the
equivalent call using the code:

CBHelpSystem.addToDefaultHelpSet ("myHelpSet", getClass().getClassLoader());

In both these instances the string "myHelpSet" is replaced with the name of
your particular plug-in's help set.

102 Administrator Guide

Chapter 14: LDAP and Directory
Resources

For more information about JXplorer

See the following:

® The eTrust Directory Developer Guide

® The JXplorer API, which is installed at:
— Windows: %DXHOME%\. . \jxplorer\api
— UNIX: $DXHOME/../jxplorer/api

B The JXplorer page on SourceForge
(http://sourceforge.net/projects/jxplorer)

For more information about Java

See the following:

® Java home page (http://java.sun.com/)

m AP| Specification for Java 2 Standard Edition 1.4.2
(http://java.sun.com/j2se/1.4.2/docs/api/)

® Java naming and directory interface (JNDI) page
(http://www.java.sun.com/products/jndi/index.html)

For information about LDAP

® See the Request For Comments (RFC) documents, especially rfc2251 to
rfc2256, at the RFC page on the IETF home page
(http://www.ietf.org/rfc/).

LDAP and Directory Resources 103

http://sourceforge.net/projects/jxplorer
http://java.sun.com/
http://java.sun.com/j2se/1.4.2/docs/api/
http://www.java.sun.com/products/jndi/index.html
http://www.ietf.org/rfc/

	Administrator Guide
	1: About JXplorer
	What Is JXplorer?
	What Can You Do with JXplorer?
	Requirements and Supported Platforms
	Supported Specifications

	2: The JXplorer Browser
	The Tree Pane
	The Explore Tree
	The Results Tree
	The Schema Tree

	The Quick Search Bar
	The Entry Display
	The HTML Viewer
	HTML Templates

	The Table Editor

	3: Connecting to a Directory
	The Connect Dialog
	Security Levels for LDAP Connections
	Save Connection Details in a Template

	4: Searching a Directory
	Quick Searches
	Complex Searches
	Choose Which Attributes to Return
	Save Searches for Later Use
	Write Your Own Searches

	Search Operators
	Search Limits
	Bookmarks

	5: Editing the Directory
	Directory Tree Operations
	Cut, Copy, Paste, and Delete
	Rename Entries in the Directory Tree

	Modify Attributes in an Entry
	Change Attribute Values
	Delete Values and Attributes
	Add Values and Attributes
	Mandatory Attributes
	Naming Attributes
	Change Classes

	Attribute Editors
	Work with Audio Files
	Work with Photos
	Work with Postal Addresses
	Work with User Passwords

	Binary Values
	Import Binary Files
	Files that Can Be Launched

	Add a New Entry
	Choose Object Classes
	Set Initial Attribute Values

	Submit an Entry to the Directory

	6: Importing and Exporting Data
	Binary Values in LDIF Files
	Use an LDIF File Without a Directory

	7: Resolving Aliases
	How JXplorer Displays Aliases
	Create a New Alias Entry
	Resolve Aliases While Browsing
	Example: Resolving Aliases While Browsing

	Resolve Aliases While Searching

	8: Logging and Troubleshooting
	Logging
	Troubleshooting

	9: Customizing JXplorer
	Why Customize the JXplorer Interface?
	Customize Tree Icons
	Add a Custom Icon
	Display Entry-Specific Icons

	Create HTML Viewing Templates
	HTML Tag Extensions
	HTML Forms
	Example: Customized JXplorer GUIs
	Corporate Branding Example
	Data Entry Example

	Customize HTML Forms
	Example: Customized HTML
	Sample Templates
	Name the Buttons
	Name the Form Elements
	Example Customized HTML Forms
	Example: organizationUnit HTML Form
	Example: Script to Create HTML Form

	Add Custom HTML Pages
	Internationalize JXplorer
	Translate HTML Templates
	Translate Help Files
	Translate the Welcome Page
	Files Used in Translation
	Use the Template Map File
	Test Your Translation
	File Formats
	Fonts

	Supply Customized Files
	Supply the Changed Files Directly
	Supply the Changed Files in a ZIP File
	Structure of the ZIP File

	10: How JXplorer Reads the Schema
	Data in Each Schema Object
	Checking Entries for Schema Conformance

	11: How JXplorer Handles Passwords
	Password Storage
	Password Hashing
	JXplorer with eTrust Directory
	JXplorer with Other LDAP Directories

	12: How JXplorer Handles SSL, SASL, and Certificates
	SSL and SASL
	Server-Authenticated SSL
	Client-Authenticated SSL and SASL

	Manage Certificates and Keystores
	How Certificates Are Stored
	How to Decide Where to Store Certificates
	How to Work with Private Keys
	How to Work with Public Keys

	13: Extending JXplorer
	Pluggable Attribute Editors
	Ways to Edit Binary Attributes
	Using a Windows Editor
	Using the File Launching Feature

	Foreign Languages Do Not Require a Pluggable Editor
	Writing a Pluggable Attribute Editor
	Extending the abstractbinaryeditor class
	Extending DefaultBinaryEditor
	Example: Handling Masked Binary Password Data

	Pluggable Entry Editors
	Editor Names and Locations
	The PluggableEditor Interface
	The DataSink Interface
	Extending BasicPluggableEditor
	Sending Changes to the Directory

	Plug-ins with Data Listeners
	The JXplorer Threading Model
	Using the DataListener Interface
	Other DataListeners
	Complex Directory Interactions

	Plug-ins with Threads
	Bundling Complex Directory Code
	Example: Reading an Entry and Printing It Out
	Unthreaded Broker Methods
	Example: Check for Existence, Create, and Copy to Backup Branch

	Localize JXplorer Plug-ins
	Add Help Files to Plug-ins

	14: LDAP and Directory Resources

